A219539 T(n,k) is the number of k-points on the left side of a crosscut of simple symmetric n-Venn diagram.
1, 1, 1, 1, 2, 3, 2, 1, 1, 4, 11, 19, 23, 19, 11, 4, 1, 1, 5, 17, 38, 61, 71, 61, 38, 17, 5, 1, 1, 7, 33, 107, 257, 471, 673, 757, 673, 471, 257, 107, 33, 7, 1, 1, 8, 43, 161, 451, 977, 1675, 2303, 2559, 2303, 1675, 977, 451, 161, 43, 8, 1
Offset: 5
Examples
T(n, k) is defined for n>=5 being prime: 5: 1, 1, 1, 7: 1, 2, 3, 2, 1, 11: 1, 4, 11, 19, 23, 19, 11, 4, 1, ...
Links
- K. Mamakani and F. Ruskey, A New Rose: The First Simple Symmetric 11-Venn Diagram, arXiv:1207.6452 [cs.CG], 2012.
- Andrei K. Svinin, On some class of sums, arXiv:1610.05387 [math.CO], 2016. See p. 11.
Programs
-
PARI
a(m) = {for (n=5, m, if (isprime(n), for (k=1, n-2,if (k==1, rk =1, rk = (binomial(n-1, k)+ (-1)^(k+1))/n);print1(rk, ", "););););}
Formula
For 1<=k=5 being prime.
T(n, k) - T(n, k-1) = (A000108(k-1) + 2*(-1)^(k+1))/n.
Comments