cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A219549 Smallest prime factor of 2^(8n) + 1.

Original entry on oeis.org

257, 65537, 97, 641, 257, 193, 257, 274177, 97, 65537, 257, 641, 257, 449, 97, 59649589127497217, 257, 193, 257, 641, 97, 65537, 257, 769, 257, 65537, 97, 641, 257, 193, 257, 1238926361552897, 97, 5441, 257, 641, 257, 65537, 97, 274177, 257, 193, 257, 641, 97, 65537, 257, 59649589127497217, 257, 65537, 97, 641, 257, 193, 257, 274177, 97, 65537, 257, 641, 257, 5953
Offset: 1

Views

Author

Jonathan Sondow, Nov 28 2012

Keywords

Comments

The smallest prime factor of 2^(8n+k) + 1 does not depend on n if 0 < k < 8 (see Formula in A002586).
For references and links, see A002586.

Examples

			a(1) = 2^8 + 1 = 257 is the Fermat prime A019434(3).
a(2) = 2^16 + 1 = 65537 is the Fermat prime A019434(4).
		

Crossrefs

Programs

  • Mathematica
    Table[FactorInteger[2^(8*n) + 1][[1, 1]], {n, 20}] (* T. D. Noe, Nov 29 2012 *)

Formula

a(n) = A002586(8n) = A020639(2^(8n) + 1).
a(2^(k-3)) = A020639(A000215(k)) is the smallest prime factor of the k-th Fermat number 2^(2^k) + 1.