cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A219597 Number of 4Xn arrays of the minimum value of corresponding elements and their horizontal or vertical neighbors in a random, but sorted with lexicographically nondecreasing rows and nonincreasing columns, 0..2 4Xn array.

Original entry on oeis.org

10, 46, 264, 1114, 4152, 14793, 51122, 170728, 550156, 1714425, 5181670, 15217623, 43453991, 120646669, 325663378, 854806408, 2182941966, 5428211529, 13157408701, 31124038143, 71939605189, 162674579688, 360302418944
Offset: 1

Views

Author

R. H. Hardin Nov 23 2012

Keywords

Comments

Row 4 of A219595

Examples

			Some solutions for n=3
..0..0..0....0..0..0....1..0..0....0..0..0....1..0..0....0..0..0....0..0..0
..0..0..0....1..0..0....1..0..0....1..0..0....0..0..0....2..0..0....1..0..0
..0..0..0....0..0..0....1..1..0....1..1..0....2..0..0....2..1..0....1..0..0
..1..1..0....0..0..0....1..1..2....1..2..2....2..2..1....2..1..1....1..1..0
		

Formula

Empirical: a(n) = (1/32315020923606220800000)*n^25 - (109/11079435745236418560000)*n^24 + (2143/1292600836944248832000)*n^23 - (79003/421500272916602880000)*n^22 + (50173/3193183885731840000)*n^21 - (44960737/43792236147179520000)*n^20 + (27515689/510909421717094400)*n^19 - (60384781/26191528796160000)*n^18 + (21813448039/268899695640576000)*n^17 - (2221068910103/949057749319680000)*n^16 + (9482825036023/173993920708608000)*n^15 - (91557547148539/93211028951040000)*n^14 + (5251971236010727/434984801771520000)*n^13 - (62481716542887379/1491376463216640000)*n^12 - (9282784846386031/3954407288832000)*n^11 + (4293029543793101017/59316109332480000)*n^10 - (105931313393469849253/84031154887680000)*n^9 + (202993929290792591407/13095764398080000)*n^8 - (3712306914099958615759/26609865714432000)*n^7 + (11336104215245400553903/12671364625920000)*n^6 - (369076146776783247776693/101634903770400000)*n^5 + (41196192835097343490679/9034213668480000)*n^4 + (15522433799255326230017/346311523958400)*n^3 - (23040269972514059058427/74209612276800)*n^2 + (112252070661045629/127481640)*n - 1011429662 for n>12