A219641 a(n) = n minus (number of 1's in Zeckendorf expansion of n).
0, 0, 1, 2, 2, 4, 4, 5, 7, 7, 8, 9, 9, 12, 12, 13, 14, 14, 16, 16, 17, 20, 20, 21, 22, 22, 24, 24, 25, 27, 27, 28, 29, 29, 33, 33, 34, 35, 35, 37, 37, 38, 40, 40, 41, 42, 42, 45, 45, 46, 47, 47, 49, 49, 50, 54, 54, 55, 56, 56, 58, 58, 59, 61, 61, 62, 63, 63, 66
Offset: 0
Keywords
Links
- Antti Karttunen, Table of n, a(n) for n = 0..10000
- Paul Baird-Smith, Alyssa Epstein, Kristen Flint, and Steven J. Miller, The Zeckendorf Game, arXiv:1809.04881 [math.NT], 2018.
Crossrefs
Cf. A007895, A014417. A022342 gives the positions of records, resulting the same sequence with duplicates removed: A219640. A035336 gives the positions of values that occur only once: A219639. Cf. also A219637, A219642. Analogous sequence for binary system: A011371, for factorial number system: A219651.
Programs
-
Mathematica
zeck = DigitCount[Select[Range[0, 500], BitAnd[#, 2*#] == 0&], 2, 1]; Range[0, Length[zeck]-1] - zeck (* Jean-François Alcover, Jan 25 2018 *)
-
Python
from sympy import fibonacci def a(n): k=0 x=0 while n>0: k=0 while fibonacci(k)<=n: k+=1 x+=10**(k - 3) n-=fibonacci(k - 1) return str(x).count("1") print([n - a(n) for n in range(101)]) # Indranil Ghosh, Jun 09 2017
-
Scheme
(define (A219641 n) (- n (A007895 n)))
Formula
a(n) = n - A007895(n).
Comments