A219642 Number of steps to reach 0 starting with n and using the iterated process: x -> x - (number of 1's in Zeckendorf expansion of x).
0, 1, 2, 3, 3, 4, 4, 5, 6, 6, 7, 7, 7, 8, 8, 9, 9, 9, 10, 10, 10, 11, 11, 12, 12, 12, 13, 13, 13, 14, 14, 14, 15, 15, 16, 16, 17, 17, 17, 18, 18, 18, 19, 19, 19, 20, 20, 21, 21, 21, 22, 22, 22, 22, 23, 24, 24, 25, 25, 25, 26, 26, 26, 27, 27, 27, 28, 28, 29, 29
Offset: 0
Keywords
Links
- A. Karttunen, Table of n, a(n) for n = 0..10946
Crossrefs
Programs
-
PARI
A007895(n)=if(n<4, n>0, my(k=2,s,t); while(fibonacci(k++)<=n,); while(k && n, t=fibonacci(k); if(t<=n, n-=t; s++); k--); s) a(n)=my(s); while(n, n-=A007895(n); s++); s \\ Charles R Greathouse IV, Sep 02 2015
-
Python
from sympy import fibonacci def a007895(n): k=0 x=0 while n>0: k=0 while fibonacci(k)<=n: k+=1 x+=10**(k - 3) n-=fibonacci(k - 1) return str(x).count("1") def a219641(n): return n - a007895(n) l=[0] for n in range(1, 101): l.append(1 + l[a219641(n)]) print(l) # Indranil Ghosh, Jun 09 2017
Formula
a(0)=0; for n>0, a(n) = 1+a(A219641(n)).
Comments