A219666 The infinite trunk of factorial expansion beanstalk. The only infinite sequence such that a(n-1) = a(n) - sum of digits in factorial expansion of a(n).
0, 1, 2, 5, 7, 10, 12, 17, 23, 25, 28, 30, 35, 40, 46, 48, 52, 57, 63, 70, 74, 79, 85, 92, 97, 102, 109, 119, 121, 124, 126, 131, 136, 142, 144, 148, 153, 159, 166, 170, 175, 181, 188, 193, 198, 204, 213, 221, 228, 238, 240, 244, 249, 255, 262, 266, 271, 277
Offset: 0
Links
- Antti Karttunen, Table of n, a(n) for n = 0..21622
Crossrefs
Programs
-
Mathematica
nn = 10^3; m = 1; While[m! < Floor[6 nn/5], m++]; m; t = TakeWhile[Reverse@ NestWhileList[# - Total@ IntegerDigits[#, MixedRadix[Reverse@ Range[2, m]]] &, Floor[6 nn/5], # > 0 &], # <= nn &] (* Michael De Vlieger, Jun 27 2016, Version 10.2 *)
-
Scheme
;; Memoizing definec-macro from Antti Karttunen's IntSeq-library (definec (A219666 n) (cond ((<= n 2) n) ((= (A226061 (A230411 n)) n) (- (A000142 (A230411 n)) 1)) (else (- (A219666 (+ n 1)) (A034968 (A219666 (+ n 1))))))) ;; Another variant, utilizing A230416 (which gives a more convenient way to compute large number of terms of this sequence): (define (A219666 n) (A230416 (A230432 n))) ;; This function is for checking whether n belongs to this sequence: (define (inA219666? n) (or (zero? n) (= 1 (- (A230418 (+ 1 n)) (A230418 n)))))
Comments