A219671 Number of n-step paths on cubic lattice from (0,0,0) to (1,0,0) with moves in any direction but no zero moves allowed.
0, 1, 16, 243, 4704, 90930, 1883760, 39868955, 867923840, 19226700486, 432776971200, 9863289713046, 227212909995456, 5281459355486028, 123725917334379360, 2918138849807324715, 69236356202861088384, 1651381196044566423294, 39572852284708565895072
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..100
Crossrefs
Cf. A219670.
Programs
-
Maple
b:= proc(n,p) option remember; `if`(p[3]>n, 0, `if`(n=0, 1, add(add(add(`if`(i=0 and j=0 and k=0, 0, b(n-1, sort(map(abs, p+[i, j, k])))), i=-1..1), j=-1..1), k=-1..1))) end: a:= n-> b(n, [0$2, 1]): seq (a(n), n=0..25); # Alois P. Heinz, Nov 28 2012
-
Mathematica
b[n_, p_] := b[n, p] = If[p[[3]]>n, 0, If[n==0, 1, Sum[Sum[Sum[If[i==0 && j==0 && k==0, 0, b[n-1, Sort[Map[Abs, p + {i, j, k}]]]], {i, -1, 1}], {j, -1, 1}], {k, -1, 1}]]]; a[n_] := b[n, {0, 0, 1}]; a /@ Range[0, 25] (* Jean-François Alcover, Dec 20 2020, after Alois P. Heinz *)
Formula
a(n) ~ c * 26^n / n^(3/2), where c = 0.1102253437... . - Vaclav Kotesovec, Sep 07 2014
Extensions
More terms from Alois P. Heinz, Nov 28 2012