A219705 Decimal expansion of cos(log(2)).
7, 6, 9, 2, 3, 8, 9, 0, 1, 3, 6, 3, 9, 7, 2, 1, 2, 6, 5, 7, 8, 3, 2, 9, 9, 9, 3, 6, 6, 1, 2, 7, 0, 7, 0, 1, 4, 4, 0, 8, 9, 5, 9, 9, 4, 9, 1, 1, 9, 6, 3, 8, 5, 3, 1, 6, 9, 8, 7, 1, 5, 0, 7, 4, 2, 9, 0, 8, 1, 3, 4, 6, 8, 0, 7, 3, 4, 0, 7, 8, 9, 0, 5, 9, 7, 8, 9, 7, 4, 2, 4, 2, 6, 0, 1, 6, 8, 0, 7, 2, 7, 1, 2, 9, 5
Offset: 0
Examples
0.76923890136...
References
- Florian Cajori, A History of Mathematical Notations, Dover edition (2012), par. 309.
- W. Michael Kelley, The Humongous Book of Calculus Problems. New York: Alpha Books (Penguin Group) p. 233, Problem 15.22.
Links
- Paul J. Nahin, An Imaginary Tale: The Story of sqrt(-1), Princeton, New Jersey: Princeton University Press (1988), 143 - 144.
- Elizabeth Volz, An English translation of portions of seven correspondences between Euler and Goldbach on Euler’s complex exponential paradox and special values of cosine, 2008
- Elizabeth Volz and Hieu D. Nguyen, Euler, Goldbach and exact values of trigonometric functions, 2008 preprint
Programs
-
Mathematica
RealDigits[Cos[Log[2]], 10, 105][[1]]
-
Maxima
fpprec:110; ev(bfloat(cos(log(2)))); /* Bruno Berselli, Dec 31 2012 */
-
PARI
cos(log(2)) \\ Charles R Greathouse IV, Nov 25 2012
Formula
cos(log(2)) = (2^i + 2^(-i))/2.
Extensions
a(43) ff. corrected by Georg Fischer, Apr 03 2020
Comments