cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A219862 Number of tilings of a 4 X n rectangle using dominoes and straight (3 X 1) trominoes.

Original entry on oeis.org

1, 1, 7, 41, 184, 1069, 5624, 29907, 161800, 862953, 4631107, 24832532, 133028028, 713283085, 3822965706, 20491221900, 109840081931, 588746006676, 3155783700063, 16915482096570, 90669231898345, 486001022349368, 2605035346917456, 13963368769216664
Offset: 0

Views

Author

Alois P. Heinz, Nov 29 2012

Keywords

Examples

			a(2) = 7, because there are 7 tilings of a 4 X 2 rectangle using dominoes and straight (3 X 1) trominoes:
.___.   .___.   .___.   .___.   .___.   .___.   .___.
| | |   |___|   |___|   | | |   |___|   |___|   | | |
| | |   | | |   |___|   |_|_|   | | |   |___|   |_|_|
|_|_|   | | |   |___|   |___|   |_|_|   | | |   | | |
|___|   |_|_|   |___|   |___|   |___|   |_|_|   |_|_|
		

Crossrefs

Column k=4 of A219866.

Programs

  • Maple
    gf:= -(x^42 +x^41 -4*x^40 +4*x^38 -41*x^37 +16*x^36 +45*x^35 +67*x^34 -166*x^33 +282*x^32 -148*x^31 +155*x^30 -405*x^29 +995*x^28 -1118*x^27 +575*x^26 -1863*x^25 +402*x^24 -3552*x^23 +2577*x^22 -406*x^21 +5797*x^20 -741*x^19 +3045*x^18 -5606*x^17 +223*x^16 -4294*x^15 +2924*x^14 -753*x^13 +3011*x^12 -1029*x^11 +811*x^10 -1205*x^9 +248*x^8 -310*x^7 +229*x^6 -17*x^5 +53*x^4 -20*x^3 -3*x^2 -3*x +1) /
    (x^45 -x^43 -3*x^42 +13*x^41 -58*x^40 +10*x^39 -32*x^38 +88*x^37 -278*x^36 +734*x^35 +32*x^34 +1108*x^33 -657*x^32 +1842*x^31 -4783*x^30 -680*x^29 -7786*x^28 +1924*x^27 -6435*x^26 +15731*x^25 +1875*x^24 +19846*x^23 -9300*x^22 +5040*x^21 -27627*x^20 +3863*x^19 -15477*x^18 +18628*x^17 -2769*x^16 +16066*x^15 -8873*x^14 +4310*x^13 -8602*x^12 +2523*x^11 -2657*x^10 +2838*x^9 -644*x^8 +797*x^7 -395*x^6 +17*x^5 -102*x^4 +27*x^3 +6*x^2 +4*x -1):
    a:= n-> coeff(series(gf, x, n+1), x, n):
    seq(a(n), n=0..30);

Formula

G.f.: see Maple program.