cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A219867 Number of tilings of a 3 X n rectangle using dominoes and straight (3 X 1) trominoes.

Original entry on oeis.org

1, 1, 4, 14, 41, 143, 472, 1562, 5233, 17395, 58002, 193346, 644219, 2147421, 7156704, 23852324, 79497767, 264952955, 883057354, 2943113598, 9809007073, 32692164351, 108958689984, 363145140266, 1210315480391, 4033823637937, 13444208923518, 44807796457932
Offset: 0

Views

Author

Alois P. Heinz, Nov 30 2012

Keywords

Examples

			a(2) = 4, because there are 4 tilings of a 3 X 2 rectangle using dominoes and straight (3 X 1) trominoes:
.___.   .___.   .___.   .___.
| | |   |___|   | | |   |___|
| | |   |___|   |_|_|   | | |
|_|_|   |___|   |___|   |_|_|
		

Crossrefs

Column k=3 of A219866.

Programs

  • Maple
    gf:= -(x^15 +x^13 +x^12 +6*x^11 -x^10 +3*x^9 -10*x^8 -4*x^7 -9*x^6 +2*x^5 +2*x^4 +7*x^3 +2*x^2 -1) / (x^18 +x^17 +4*x^16 +5*x^15 +10*x^14 -3*x^13 +3*x^12 -24*x^11 -14*x^10 -24*x^9 +13*x^8 +5*x^7 +30*x^6 +11*x^5 +3*x^4 -12*x^3 -5*x^2 -x +1):
    a:= n-> coeff(series(gf, x, n+1), x, n):
    seq(a(n), n=0..30);

Formula

G.f.: see Maple program.