cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A219878 Number of nX3 arrays of the minimum value of corresponding elements and their horizontal, diagonal or antidiagonal neighbors in a random, but sorted with lexicographically nondecreasing rows and nonincreasing columns, 0..2 nX3 array.

Original entry on oeis.org

6, 11, 47, 146, 410, 1069, 2701, 6645, 15787, 36047, 79071, 166909, 339837, 668982, 1276058, 2363344, 4258060, 7476554, 12815234, 21476998, 35244068, 56710659, 89591851, 139128423, 212611297, 320053673, 475043961, 695818283, 1006597679
Offset: 1

Views

Author

R. H. Hardin Nov 30 2012

Keywords

Comments

Column 3 of A219883

Examples

			Some solutions for n=3
..1..0..0....2..0..0....0..0..0....1..0..0....2..1..1....1..0..0....1..0..1
..1..0..1....2..0..1....0..0..0....1..0..1....2..1..1....1..0..1....1..0..0
..1..2..1....2..1..2....1..0..0....2..1..1....2..1..2....2..2..2....1..0..0
		

Formula

Empirical: a(n) = (1/19958400)*n^11 + (1/907200)*n^10 - (1/72576)*n^9 + (29/120960)*n^8 + (31/28800)*n^7 - (263/10800)*n^6 + (175169/362880)*n^5 - (1469677/362880)*n^4 + (901433/56700)*n^3 + (759737/50400)*n^2 - (837073/3960)*n + 342 for n>4

A219879 Number of nX4 arrays of the minimum value of corresponding elements and their horizontal, diagonal or antidiagonal neighbors in a random, but sorted with lexicographically nondecreasing rows and nonincreasing columns, 0..2 nX4 array.

Original entry on oeis.org

10, 17, 129, 621, 2645, 10350, 40239, 155199, 581728, 2085519, 7121374, 23225035, 72683520, 219218974, 639377404, 1808073511, 4967931875, 13286469360, 34640551307, 88162618939, 219292820124, 533661457600, 1271821824645
Offset: 1

Views

Author

R. H. Hardin Nov 30 2012

Keywords

Comments

Column 4 of A219883

Examples

			Some solutions for n=3
..1..0..0..0....0..0..0..0....2..0..0..0....1..1..0..1....2..1..1..1
..1..0..0..0....0..0..0..0....2..0..0..0....1..0..0..0....2..1..1..1
..1..1..0..0....1..1..0..1....2..2..0..2....1..0..0..0....2..2..1..1
		

Formula

Empirical: a(n) = (1/1105220249217462744317952000000)*n^29 + (1/38111043076464232562688000000)*n^28 - (1/201645730563302817792000000)*n^27 + (389/604937191689908453376000000)*n^26 - (307/46533630129992957952000000)*n^25 - (773/404640261999938764800000)*n^24 + (40878821/195441246545970423398400000)*n^23 - (70069501/8497445501998714060800000)*n^22 + (12139/477733485241958400000)*n^21 + (50109247/2829652181817753600000)*n^20 - (445566582679/404640261999938764800000)*n^19 + (737417025883/21296855894733619200000)*n^18 - (2216933583028729/5814041659262278041600000)*n^17 - (6268242075250621/342002450544839884800000)*n^16 + (18619463335254179/16285830978325708800000)*n^15 - (536852810288080877/16285830978325708800000)*n^14 + (1152350125136381123/2129685589473361920000)*n^13 - (24885562289413355029/10648427947366809600000)*n^12 - (39408208806540972298007/289685642113592524800000)*n^11 + (1255759711529881816639841/289685642113592524800000)*n^10 - (4460229918485515193847251/63225040937490432000000)*n^9 + (370772167856232917329483/540384965277696000000)*n^8 - (39409170362295331975190999/13464592051502592000000)*n^7 - (280106596148918041437854963/13464592051502592000000)*n^6 + (23189350672718808866722526453/51053244861947328000000)*n^5 - (379821968293133120568499603/102106489723894656000)*n^4 + (3496996713409130344932041/202592241515664000)*n^3 - (3708578246594560887479/83889126921600)*n^2 + (35941859372224430069/776363187600)*n + 10128532 for n>12

A219880 Number of nX5 arrays of the minimum value of corresponding elements and their horizontal, diagonal or antidiagonal neighbors in a random, but sorted with lexicographically nondecreasing rows and nonincreasing columns, 0..2 nX5 array.

Original entry on oeis.org

15, 24, 292, 2190, 14536, 89795, 565824, 3605746, 22430565, 132945658, 747855900, 4015816403, 20719013269, 103153843621, 496871314897, 2319802248962, 10515430463734, 46349614135168, 198938106785464, 832494580725450
Offset: 1

Views

Author

R. H. Hardin Nov 30 2012

Keywords

Comments

Column 5 of A219883

Examples

			Some solutions for n=3
..1..0..0..0..0....1..1..0..0..0....2..2..1..1..1....2..2..1..0..0
..1..0..0..0..0....1..1..0..0..0....2..2..1..1..1....2..2..1..0..1
..1..0..1..0..0....2..1..1..1..2....2..2..2..1..2....2..2..2..2..2
		

A219884 Number of 3 X n arrays of the minimum value of corresponding elements and their horizontal, diagonal or antidiagonal neighbors in a random, but sorted with lexicographically nondecreasing rows and nonincreasing columns, 0..2 3 X n array.

Original entry on oeis.org

10, 21, 47, 129, 292, 600, 1158, 2148, 3863, 6784, 11679, 19763, 32938, 54144, 87860, 140803, 222883, 348483, 538145, 820756, 1236342, 1839593, 2704258, 3928566, 5641847, 8012546, 11257843, 15655113, 21555482, 29399758, 39737040, 53246333
Offset: 1

Views

Author

R. H. Hardin, Nov 30 2012

Keywords

Comments

Row 3 of A219883.

Examples

			Some solutions for n=3:
..1..0..0....1..0..0....0..0..0....0..0..0....1..1..1....1..0..0....0..0..0
..1..0..1....1..0..1....0..0..0....0..0..0....1..0..1....1..0..0....0..0..0
..2..1..2....1..0..0....2..2..2....2..1..2....1..0..0....1..0..1....0..1..0
		

Crossrefs

Cf. A219883.

Formula

Empirical: a(n) = (1/362880)*n^9 - (1/13440)*n^8 + (17/12096)*n^7 - (37/2880)*n^6 + (1813/17280)*n^5 + (1579/5760)*n^4 - (76849/9072)*n^3 + (768487/10080)*n^2 - (590021/2520)*n + 217 for n>6.
Conjectures from Colin Barker, Jul 28 2018: (Start)
G.f.: x*(10 - 79*x + 287*x^2 - 596*x^3 + 697*x^4 - 265*x^5 - 504*x^6 + 984*x^7 - 895*x^8 + 565*x^9 - 351*x^10 + 273*x^11 - 206*x^12 + 112*x^13 - 36*x^14 + 5*x^15) / (1 - x)^10.
a(n) = 10*a(n-1) - 45*a(n-2) + 120*a(n-3) - 210*a(n-4) + 252*a(n-5) - 210*a(n-6) + 120*a(n-7) - 45*a(n-8) + 10*a(n-9) - a(n-10) for n>16.
(End)

A219885 Number of 4Xn arrays of the minimum value of corresponding elements and their horizontal, diagonal or antidiagonal neighbors in a random, but sorted with lexicographically nondecreasing rows and nonincreasing columns, 0..2 4Xn array.

Original entry on oeis.org

15, 46, 146, 621, 2190, 6965, 21035, 60891, 171009, 465323, 1225425, 3124293, 7723032, 18545881, 43355303, 98866072, 220320615, 480589189, 1027625310, 2156754843, 4448124037, 9024377209, 18027331364, 35488683485, 68901443927
Offset: 1

Views

Author

R. H. Hardin Nov 30 2012

Keywords

Comments

Row 4 of A219883

Examples

			Some solutions for n=3
..0..0..0....1..0..1....1..0..1....0..0..0....1..0..0....1..0..0....0..0..0
..0..0..0....1..0..0....1..0..0....0..0..0....1..0..1....1..0..1....0..0..0
..0..0..0....1..0..1....1..0..0....0..0..0....1..0..0....2..1..1....0..0..0
..1..0..1....1..1..1....2..0..2....1..0..2....2..0..1....2..1..1....0..2..0
		

Formula

Empirical: a(n) = (1/15511210043330985984000000)*n^25 - (1/62044840173323943936000)*n^24 + (659/310224200866619719680000)*n^23 - (223/1348800873333129216000)*n^22 + (11969/1751689445887180800000)*n^21 + (13987/175168944588718080000)*n^20 - (307777/9016048618536960000)*n^19 + (218951/80669908692172800)*n^18 - (82167296539/645359269537382400000)*n^17 + (13594532843/3796230997278720000)*n^16 - (148582864867/5965505852866560000)*n^15 - (1842704639807/596550585286656000)*n^14 + (75084344850088337/417585409700659200000)*n^13 - (232073313496988597/41758540970065920000)*n^12 + (200770875484427393/1898115498639360000)*n^11 - (169860589360483739/189811549863936000)*n^10 - (86302000251116357611/5762136335155200000)*n^9 + (405525610427277793513/576213633515520000)*n^8 - (19180292378240586517013/1419192838103040000)*n^7 + (823632212233422499573/5256269770752000)*n^6 - (16853478306444036905959921/16261584603264000000)*n^5 + (8636807269422406550143/6022809112320000)*n^4 + (2309304917571323764033/58203617472000)*n^3 - (428371026518922607544/1159525191825)*n^2 + (1047154147978610871/743642900)*n - 2019003704 for n>23

A219877 Number of n X n arrays of the minimum value of corresponding elements and their horizontal, diagonal or antidiagonal neighbors in a random, but sorted with lexicographically nondecreasing rows and nonincreasing columns, 0..2 n X n array.

Original entry on oeis.org

3, 7, 47, 621, 14536, 764027, 113313853
Offset: 1

Views

Author

R. H. Hardin, Nov 30 2012

Keywords

Examples

			Some solutions for n=3:
..0..0..0....1..0..1....2..2..2....2..0..0....2..0..0....1..1..1....1..0..1
..0..0..0....1..0..0....2..2..2....2..0..1....2..0..0....1..1..1....1..0..0
..0..1..0....2..0..2....2..2..2....2..1..1....2..0..2....2..1..1....2..0..0
		

Crossrefs

Diagonal of A219883.

A219881 Number of nX6 arrays of the minimum value of corresponding elements and their horizontal, diagonal or antidiagonal neighbors in a random, but sorted with lexicographically nondecreasing rows and nonincreasing columns, 0..2 nX6 array.

Original entry on oeis.org

21, 32, 600, 6965, 74998, 764027, 8017398, 85092182, 882578607, 8731245391, 82020525701, 735991805511, 6353407612599, 53004720585300, 428371858603213, 3358742175425755
Offset: 1

Views

Author

R. H. Hardin Nov 30 2012

Keywords

Comments

Column 6 of A219883

Examples

			Some solutions for n=3
..0..0..0..0..0..0....1..0..0..0..0..0....0..0..0..0..0..0....2..2..0..0..0..0
..0..0..0..0..0..0....1..0..0..0..0..0....0..0..0..0..0..0....2..2..0..0..0..0
..0..1..0..1..0..1....1..2..1..0..0..0....1..1..2..2..0..2....2..2..1..1..1..1
		

A219882 Number of nX7 arrays of the minimum value of corresponding elements and their horizontal, diagonal or antidiagonal neighbors in a random, but sorted with lexicographically nondecreasing rows and nonincreasing columns, 0..2 nX7 array.

Original entry on oeis.org

28, 41, 1158, 21035, 371384, 6337533, 113313853, 2047979807, 36229677541, 611056441694
Offset: 1

Views

Author

R. H. Hardin Nov 30 2012

Keywords

Comments

Column 7 of A219883

Examples

			Some solutions for n=3
..2..1..1..1..1..0..0....1..1..1..0..0..0..0....1..0..0..0..0..0..0
..2..1..1..0..0..0..0....1..1..1..0..0..0..0....1..0..0..0..0..0..0
..2..1..1..0..0..0..0....2..1..1..0..1..0..2....2..0..0..0..1..0..0
		

A219886 Number of 5Xn arrays of the minimum value of corresponding elements and their horizontal, diagonal or antidiagonal neighbors in a random, but sorted with lexicographically nondecreasing rows and nonincreasing columns, 0..2 5Xn array.

Original entry on oeis.org

21, 87, 410, 2645, 14536, 74998, 371384, 1780796, 8327951, 37770000, 165587776, 701557921, 2877746302, 11458190975, 44395384830, 167697083241, 618401792448, 2228478398270, 7854147511367
Offset: 1

Views

Author

R. H. Hardin Nov 30 2012

Keywords

Comments

Row 5 of A219883

Examples

			Some solutions for n=3
..0..0..0....2..0..0....1..1..1....1..1..1....0..0..0....0..0..0....0..0..0
..0..0..0....2..0..0....1..1..1....1..1..1....0..0..0....0..0..0....0..0..0
..1..0..1....2..0..0....0..0..0....1..0..1....0..0..0....0..0..0....1..0..0
..1..2..1....2..0..1....0..0..0....1..0..0....0..0..0....0..1..0....1..0..1
..2..2..2....2..1..2....0..0..0....1..0..0....2..1..2....1..2..1....2..0..0
		

A219887 Number of 6Xn arrays of the minimum value of corresponding elements and their horizontal, diagonal or antidiagonal neighbors in a random, but sorted with lexicographically nondecreasing rows and nonincreasing columns, 0..2 6Xn array.

Original entry on oeis.org

28, 151, 1069, 10350, 89795, 764027, 6337533, 51044999, 398508546, 2994521086
Offset: 1

Views

Author

R. H. Hardin Nov 30 2012

Keywords

Comments

Row 6 of A219883

Examples

			Some solutions for n=3
..0..0..0....1..1..1....0..0..0....0..0..0....0..0..0....0..0..0....0..0..0
..0..0..0....0..0..0....0..0..0....0..0..0....0..0..0....0..0..0....0..0..0
..1..0..0....0..0..0....1..0..1....1..1..1....0..1..0....1..1..1....1..0..1
..2..0..0....0..0..0....1..0..0....0..1..0....1..1..1....1..1..2....1..0..1
..2..0..1....0..0..0....1..0..0....0..0..0....2..1..1....1..0..2....2..0..0
..2..1..1....2..0..0....1..0..2....0..2..0....2..1..1....2..0..0....2..0..2
		
Showing 1-10 of 11 results. Next