A219952 Number of tilings of an n X n square using right trominoes and 2 X 2 tiles.
1, 0, 1, 0, 6, 0, 545, 5504, 652036, 44013568, 11112714624, 3517475475328, 2781543486427548, 3568483481372543360, 9829161878198755474915, 48599777948701165162242560, 484370819140388708451108625276, 9036085159101926537420075859958528
Offset: 0
Keywords
Examples
a(4) = 6, because there are 6 tilings of a 4 X 4 square using right trominoes and 2 X 2 tiles: .___.___. .___.___. .___.___. .___.___. .___.___. .___.___. | . | . | | ._|_. | | ._| . | | ._|_. | | ._|_. | | . |_. | |___|___| |_| . |_| |_| |___| |_| ._|_| |_|_. |_| |___| |_| | . | . | | |___| | | |___| | | |_| . | | . |_| | | |___| | |___|___| |___|___| |___|___| |___|___| |___|___| |___|___|
Links
- Kai Liang, Solving tiling enumeration problems by tensor network contractions, arXiv:2503.17698 [math.CO], 2025. See p. 25, Table 4.
Extensions
a(15)-a(16) from Alois P. Heinz, Sep 24 2014
a(17) from Alois P. Heinz, Nov 18 2018