A220027 a(n) = product(i >= 0, P(n, i)^(2^i)) where P(n, i) = product(p prime, n/2^(i+1) < p <= n/2^i).
1, 1, 2, 6, 12, 60, 180, 1260, 5040, 5040, 25200, 277200, 2494800, 32432400, 227026800, 227026800, 3632428800, 61751289600, 61751289600, 1173274502400, 29331862560000, 29331862560000, 322650488160000, 7420961227680000, 601097859442080000, 601097859442080000
Offset: 0
Keywords
Crossrefs
Cf. A055773.
Programs
-
Maple
a := proc(n) local k; `if`(n < 2, 1, mul(k, k = select(isprime, [$iquo(n, 2)+1..n]))*a(iquo(n,2))^2) end: seq(a(i), i=0..25);
-
Sage
def a(n) : if n < 2 : return 1 return mul(k for k in prime_range(n//2+1,n+1))*a(n//2)^2 [a(n) for n in (0..25)]
Comments