cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A219976 Denominators of the Inverse bi-binomial transform of A164558(n)/A027642(n) read downwards antidiagonals.

Original entry on oeis.org

1, 2, 2, 6, 6, 6, 1, 3, 3, 1, 30, 30, 30, 30, 30, 1, 15, 15, 15, 15, 1, 42, 42, 210, 210, 210, 42, 42, 1, 21, 21, 105, 105, 21, 21, 1, 30, 30, 210, 210, 210, 210, 210, 30, 30, 1, 15, 15, 105, 105, 105, 105, 15, 15, 1
Offset: 0

Views

Author

Paul Curtz, Dec 02 2012

Keywords

Comments

Starting from any sequence a(k) in the first row, we define the array T(n,k) of the inverse bi-binomial transform by T(0,k) = a(k), T(n,k) = T(n-1,k+1) -2*T(n-1,k) n>0. Hence A164558(n)/A027642(n) and successive "bi-differences":
1, 3/2, 13/6, 3, 119/30, 5, 253/42, 7, 239/30, 9;
-1/2, -5/6, -4/3, -61/30, -44/15, -167/42, -106/21, -181/30, -104/15;
1/6, 1/3, 19/30, 17/15, 397/210, 61/21 , 853/210, 77/15;
0, -1/30, -2/15, -79/210, -92/105, -367/210, -314/105;
-1/30, -1/15, -23/210, -13/105, 1/210, 53/105;
0, 1/42, 2/21, 53/210, 52/105;
1/42, 1/21, 13/210, -1/105;
0, -1/30, -2/15;
-1/30, -1/15;
0.
The first column is A027641(n)/A027642(n).

Examples

			Partial array of denominators:
1,   2,   6,   1,  30,   1,  42,  1, 30,  1;
2,   6,   3,  30,  15,  42,  21, 30, 15;
6,   3,  30,  15, 210,  21, 210, 15;
1,  30,  15, 210, 105, 210, 105;
30, 15, 210, 105, 210, 105;
1,  42,  21, 210, 105;
42, 21, 210, 105;
1,  30,  15;
30, 15;
1.
a(n):
1;
2,   2;
6,   6,  6,;
1,   3,  3,  1;
30, 30, 30, 30, 30;
		

Crossrefs

Cf. A213268.

Programs

  • Mathematica
    A164558[n_] := Sum[(-1)^k*Binomial[n, k]*BernoulliB[k], {k, 0, n}] // Numerator; t[0, k_?Positive] := A164558[k] / Denominator[ BernoulliB[k]]; t[n_?Positive, k_] := t[n, k] = t[n-1, k+1] - 2*t[n-1, k]; t[0, 0] = 1; t[, ] = 0; Flatten[ Table[t[n-k , k] // Denominator, {n, 0, 9}, {k, 0, n}]] (* Jean-François Alcover, Dec 04 2012 *)