A219994 Number of tilings of an n X n square using dominoes and right trominoes.
1, 0, 2, 8, 380, 21272, 5350806, 3238675344, 6652506271144, 38896105985522272, 711716770252031164458, 38776997923112110535353528, 6460929292946758939597712150496, 3245656750963660788826395580466708824, 4953412325525289651086730443567098343730966, 22873302288206466754758793232467436030071524731072
Offset: 0
Keywords
Examples
a(3) = 8, because there are 8 tilings of a 3 X 3 square using dominoes and right trominoes: .___._. .___._. .___._. .___._. |___| | |___| | |___| | |_. | | | ._|_| | | |_| | |___| | |_|_| |_|___| |_|___| |_|___| |_|___| ._.___. ._.___. ._.___. ._.___. | |___| | | ._| | |___| | |___| |___| | |_|_| | |_|_. | |_| | | |___|_| |___|_| |___|_| |___|_| .
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..17
- Kai Liang, Solving tiling enumeration problems by tensor network contractions, arXiv:2503.17698 [math.CO], 2025. See p. 25, Table 4.