A220002 Numerators of the coefficients of an asymptotic expansion in even powers of the Catalan numbers.
1, 5, 21, 715, -162877, 19840275, -7176079695, 1829885835675, -5009184735027165, 2216222559226679575, -2463196751104762933637, 1679951011110471133453965, -5519118103058048675551057049, 5373485053345792589762994345215, -12239617587594386225052760043303511
Offset: 0
Keywords
Examples
With N = 4*n+3 the first few terms of A are A = 1 + 5/(4*N^2) + 21/(32*N^4) + 715/(128*N^6) - 162877/(2048*N^8) + 19840275/(8192*N^10). With this A C(n) = round(8*4^n*A/(N*sqrt(N*Pi))) for n = 0..39 (if computed with sufficient numerical precision).
References
- Donald E. Knuth, The Art of Computer Programming, Volume 4, Fascicle 4: Generating All Trees—History of Combinatorial Generation, 2006.
- Y. L. Luke, The Special Functions and their Approximations, Vol. 1. Academic Press, 1969.
Links
- Peter Luschny, Table of n, a(n) for n = 0..99
- J. L. Fields, A note on the asymptotic expansion of a ratio of gamma functions, Proc. Edinburgh Math. Soc. 15 (1) (1966), 43-45.
- D. Kessler and J. Schiff, The asymptotics of factorials, binomial coefficients and Catalan numbers. April 2006.
Programs
-
Maple
A220002 := proc(n) local s; s := n -> `if`(n > 0, s(iquo(n,2))+n, 0); (-1)^n*mul(4*i+2, i = 1..2*n)*2^s(iquo(n,2))*coeff(taylor(sqrt(sin(x)/x), x,2*n+2), x, 2*n) end: seq(A220002(n), n = 0..14); # Second program illustrating J. L. Fields expansion of gamma quotients. A220002 := proc(n) local recF, binSum, swing; binSum := n -> add(i,i=convert(n,base,2)); swing := n -> n!/iquo(n, 2)!^2; recF := proc(n, x) option remember; `if`(n=0, 1, -2*x*add(binomial(n-1,2*k+1)*bernoulli(2*k+2)/(2*k+2)*recF(n-2*k-2,x),k=0..n/2-1)) end: recF(2*n,-1/4)*2^(3*n-binSum(n))*swing(4*n+1) end:
-
Mathematica
max = 14; CoefficientList[ Series[ Sqrt[ Sinc[x]], {x, 0, 2*max+1}], x^2][[1 ;; max+1]]*Table[ (-1)^n*Product[ (2*k+1), {k, 1, 2*n}], {n, 0, max}] // Numerator (* Jean-François Alcover, Jun 26 2013 *)
-
Sage
length = 15; T = taylor(sqrt(sin(x)/x),x,0,2*length+2) def A005187(n): return A005187(n//2) + n if n > 0 else 0 def A220002(n): P = mul(4*i+2 for i in (1..2*n)) << A005187(n//2) return (-1)^n*P*T.coefficient(x, 2*n) [A220002(n) for n in range(length)]
-
Sage
# Second program illustrating the connection with the Euler numbers. def A220002_list(n): S = lambda n: sum((4-euler_number(2*k))/(4*k*x^(2*k)) for k in (1..n)) T = taylor(exp(S(2*n+1)),x,infinity,2*n-1).coefficients() return [t[0].numerator() for t in T][::-1] A220002_list(15)
Formula
Let [x^n]T(f(x)) denote the coefficient of x^n in the Taylor expansion of f(x) then r(n) = (-1)^n*prod_{i=1..2n}(2i+1)*[x^(2*n)]T(sqrt(sin(x)/x)) is the rational coefficient of the asymptotic expansion (in N=4*n+3) and a(n) = numerator(r(n)) = r(n)*2^(3*n-bs(n)), where bs(n) is the binary sum of n (A000120).
Also a(n) = numerator([x^(2*n)]T(exp(S))) where S = sum_{k>=1}((4-E(2*k))/ (4*k)*x^(2*k)) and E(n) the Euler numbers A122045.
Also a(n) = sf(4*n+1)*2^(3*n-bs(n))*F_{2*n}(-1/4) where sf(n) is the swinging factorial A056040, bs(n) the binary sum of n and F_{n}(x) J. L. Fields' generalized Bernoulli polynomials A220412.
In terms of sequences this means
Formula from Johannes W. Meijer:
d(n+1) = -4*(2*n+1)*A161151(n)*d(n),
Comments