cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A220466 a((2*n-1)*2^p) = 4^p*(n-1) + 2^(p-1)*(1+2^p), p >= 0 and n >= 1.

Original entry on oeis.org

1, 3, 2, 10, 3, 7, 4, 36, 5, 11, 6, 26, 7, 15, 8, 136, 9, 19, 10, 42, 11, 23, 12, 100, 13, 27, 14, 58, 15, 31, 16, 528, 17, 35, 18, 74, 19, 39, 20, 164, 21, 43, 22, 90, 23, 47, 24, 392, 25, 51, 26, 106, 27, 55, 28, 228, 29, 59, 30, 122, 31, 63, 32, 2080, 33, 67, 34, 138, 35
Offset: 1

Views

Author

Johannes W. Meijer, Dec 24 2012

Keywords

Comments

The a(n) appeared in the analysis of A220002, a sequence related to the Catalan numbers.
The first Maple program makes use of a program by Peter Luschny for the calculation of the a(n) values. The second Maple program shows that this sequence has a beautiful internal structure, see the first formula, while the third Maple program makes optimal use of this internal structure for the fast calculation of a(n) values for large n.
The cross references lead to sequences that have the same internal structure as this sequence.

Crossrefs

Cf. A000027 (the natural numbers), A000120 (1's-counting sequence), A000265 (remove 2's from n), A001316 (Gould's sequence), A001511 (the ruler function), A003484 (Hurwitz-Radon numbers), A003602 (a fractal sequence), A006519 (highest power of 2 dividing n), A007814 (binary carry sequence), A010060 (Thue-Morse sequence), A014577 (dragon curve), A014707 (dragon curve), A025480 (nim-values), A026741, A035263 (first Feigenbaum symbolic sequence), A037227, A038712, A048460, A048896, A051176, A053381 (smooth nowhere-zero vector fields), A055975 (Gray code related), A059134, A060789, A060819, A065916, A082392, A085296, A086799, A088837, A089265, A090739, A091512, A091519, A096268, A100892, A103391, A105321 (a fractal sequence), A109168 (a continued fraction), A117973, A129760, A151930, A153733, A160467, A162728, A181988, A182241, A191488 (a companion to Gould's sequence), A193365, A220466 (this sequence).

Programs

  • Haskell
    -- Following Ralf Stephan's recurrence:
    import Data.List (transpose)
    a220466 n = a006519_list !! (n-1)
    a220466_list = 1 : concat
       (transpose [zipWith (-) (map (* 4) a220466_list) a006519_list, [2..]])
    -- Reinhard Zumkeller, Aug 31 2014
  • Maple
    # First Maple program
    a := n -> 2^padic[ordp](n, 2)*(n+1)/2 : seq(a(n), n=1..69); # Peter Luschny, Dec 24 2012
    # Second Maple program
    nmax:=69: for p from 0 to ceil(simplify(log[2](nmax))) do for n from 1 to ceil(nmax/(p+2)) do a((2*n-1)*2^p) := 4^p*(n-1)  + 2^(p-1)*(1+2^p) od: od: seq(a(n), n=1..nmax);
    # Third Maple program
    nmax:=69: for p from 0 to ceil(simplify(log[2](nmax))) do n:=2^p: n1:=1: while n <= nmax do a(n) := 4^p*(n1-1)+2^(p-1)*(1+2^p): n:=n+2^(p+1): n1:= n1+1: od: od:  seq(a(n), n=1..nmax);
  • Mathematica
    A220466 = Module[{n, p}, p = IntegerExponent[#, 2]; n = (#/2^p + 1)/2; 4^p*(n - 1) + 2^(p - 1)*(1 + 2^p)] &; Array[A220466, 50] (* JungHwan Min, Aug 22 2016 *)
  • PARI
    a(n)=if(n%2,n\2+1,4*a(n/2)-2^valuation(n/2,2)) \\ Ralf Stephan, Dec 17 2013
    

Formula

a((2*n-1)*2^p) = 4^p*(n-1) + 2^(p-1)*(1+2^p), p >= 0 and n >= 1. Observe that a(2^p) = A007582(p).
a(n) = ((n+1)/2)*(A060818(n)/A060818(n-1))
a(n) = (-1/64)*(q(n+1)/q(n))/(2*n+1) with q(n) = (-1)^(n+1)*2^(4*n-5)*(2*n)!*A060818(n-1) or q(n) = (1/8)*A220002(n-1)*1/(A098597(2*n-1)/A046161(2*n))*1/(A008991(n-1)/A008992(n-1))
Recurrence: a(2n) = 4a(n) - 2^A007814(n), a(2n+1) = n+1. - Ralf Stephan, Dec 17 2013

A220412 Triangle read by rows, the coefficients of J. L. Fields generalized Bernoulli polynomials.

Original entry on oeis.org

1, 0, 1, 0, 1, 5, 0, 4, 21, 35, 0, 18, 101, 210, 175, 0, 48, 286, 671, 770, 385, 0, 33168, 207974, 531531, 715715, 525525, 175175, 0, 8640, 56568, 154466, 231231, 205205, 105105, 25025, 0, 1562544, 10615548, 30582796, 49534277, 49689640, 31481450, 11911900
Offset: 0

Views

Author

Peter Luschny, Dec 30 2012

Keywords

Comments

The Fields polynomials are defined: F_{2*n}(x) = sum(k=0..n, x^k*T(n,k)/A220411(n)) and F_{2*n+1}(x) = 0. See A220002 for an application to the asymptotic expansion of the Catalan numbers.

Examples

			The coefficients T(n,k):
[0], [1]
[1], [0,  1]
[2], [0,  1,   5]
[3], [0,  4,  21,  35]
[4], [0, 18, 101, 210, 175]
[5], [0, 48, 286, 671, 770, 385]
The Fields polynomials:
F_0 (x) =  1 / 1
F_2 (x) =  x / (-6)
F_4 (x) = (5*x^2+x) / 60
F_6 (x) = (35*x^3+21*x^2+4*x) / (-504)
F_8 (x) = (175*x^4+210*x^3+101*x^2+18*x) / 2160
F_10(x) = (385*x^5+770*x^4+671*x^3+286*x^2+48*x) / (-3168)
		

References

  • Y. L. Luke, The Special Functions and their Approximations, Vol. 1. Academic Press, 1969, page 34.

Crossrefs

Cf. A220411.

Programs

  • Maple
    FieldsPoly := proc(n,x) local recP, P; recP := proc(n,x) option remember; local k; if n = 0 then return(1) fi; -2*x*add(binomial(n-1,2*k+1)* bernoulli(2*k+2)/(2*k+2)*recP(n-2*k-2,x), k=0..(n/2-1)) end:
    P := recP(n,x); (-1)^iquo(n,2)*denom(P); sort(expand(P*%)) end:
    with(PolynomialTools): A220412_row := n -> CoefficientList(FieldsPoly( 2*i,x),x): seq(A220412_row(i),i=0..8);
  • Mathematica
    F[0, ] = 1; F[n, x_] := F[n, x] = -2*x*Sum[Binomial[n-1, 2*k+1]*BernoulliB[2*k+2]/(2*k+2)*F[n-2*k-2, x], {k, 0, n/2-1}]; t[n_, k_] := Coefficient[(-1)^Mod[n, 2]*F[2*n, x] // Together // Numerator, x, k]; Table[t[n, k], {n, 0, 8}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jan 09 2014 *)
  • Sage
    @CachedFunction
    def FieldsPoly(n):
        A = PolynomialRing(QQ, 'x')
        x = A.gen()
        if n == 0: return A(1)
        return -2*x*add(binomial(n-1,2*k+1)*bernoulli(2*k+2)/(2*k+2)*FieldsPoly(n-2*k-2) for k in (0..n-1))
    def FieldsCoeffs(n):
        P = FieldsPoly(n)
        d = (-1)^(n//2) * denominator(P)
        return list(d * P)
    A220412_row = lambda n: FieldsCoeffs(2*n)

Formula

See Y. L. Luke 2.8(3) for the generalized Bernoulli polynomials and 2.11(16) for the special case of Fields polynomials. The Maple and Sage programs give a recursive definition.

A008991 Numerators of coefficients in expansion of sqrt(sin(x)/x) (even powers only).

Original entry on oeis.org

1, -1, 1, -1, -67, -1, -64397, -113249, -3679787, -810304169, -6040635661561, -428305999661, -16827172241810597, -5620292762592913, -1550760014054450957, -4168373361283100017, -8551022502876237590534947
Offset: 0

Views

Author

Keywords

Crossrefs

Denominators are in A008992.
Appears in A220002 and A220466.

Programs

  • Maple
    A008991 := n -> numer(coeff(taylor(sqrt(sin(x)/x), x, 2*n+2), x, 2*n)):  seq(A008991(n), n=0..16); # Johannes W. Meijer, Feb 10 2013
  • Mathematica
    Numerator[CoefficientList[Series[Sqrt[Sin[x]/x], {x, 0, 50}], x][[1 ;; -1 ;; 2]]] (* G. C. Greubel, Jul 21 2018 *)
  • Sage
    length = 16; T = taylor(sqrt(sin(x)/x),x,0,2*length+2)
    [T.coefficient(x, 2*n).numerator() for n in (0..length)]
    # Peter Luschny, Dec 13 2012

Formula

sum(n>=0, A008991(n)/A008992(n) ) = A117017 - Johannes W. Meijer, Feb 10 2013

A008992 Denominators of coefficients in expansion of sqrt(sin(x)/x) (even powers only).

Original entry on oeis.org

1, 12, 1440, 24192, 29030400, 5677056, 4649508864000, 100429391462400, 39023992111104000, 100609855353520128000, 8632325589332026982400000, 6946127879462505676800000, 3060839851788186207387648000000
Offset: 0

Views

Author

Keywords

Crossrefs

Numerators are in A008991.
Appears in A220002 and A220466.

Programs

  • Maple
    A008992 := n -> denom(coeff(taylor(sqrt(sin(x)/x), x, 2*n+2), x, 2*n)): seq(A008992(n),  n=0..12); # Johannes W. Meijer, Feb 10 2013
  • Mathematica
    Denominator[CoefficientList[Series[Sqrt[Sin[x]/x], {x, 0, 50}], x][[1 ;; -1 ;; 2]]] (* G. C. Greubel, Jul 21 2018 *)
  • Sage
    length = 12; T = taylor(sqrt(sin(x)/x),x,0,2*length+2)
    [T.coefficient(x,2*n).denominator() for n in (0..length)]
    # Peter Luschny, Dec 13 2012

A193365 a(n) = A220371(n)/(4*A220371(n-1)).

Original entry on oeis.org

15, 126, 143, 1020, 399, 1150, 783, 8184, 1295, 3198, 1935, 9212, 2703, 6270, 3599, 65520, 4623, 10366, 5775, 25596, 7055, 15486, 8463, 73720, 9999, 21630, 11663, 50172, 13455, 28798, 15375, 524256, 17423, 36990
Offset: 1

Views

Author

Johannes W. Meijer, Dec 21 2012

Keywords

Comments

This sequence is, via A220371, related to A220002, which is related to the Catalan numbers.
Information about the peculiar structure of the a(n) can be found in A220466.

Crossrefs

Programs

  • Maple
    nmax:= 34: for p from 0 to ceil(simplify(log[2](nmax))) do for n from 1 to ceil(nmax/(p+2)) do a(2^p*(2*n-1)) := 2^p*(2^(2*p+4)*(2*n-1)^2-1) od: od: seq(a(n), n=1..nmax);
  • Mathematica
    b[n_] := b[n] = 2^(2n) Product[2i+1, {i, 1, 2n}] GCD[n!, 2^n];
    a[n_] := b[n]/(4 b[n-1]);
    Array[a, 34] (* Jean-François Alcover, Jun 26 2019 *)
  • Sage
    def A193365_list(len):
        a = {}; z = 1; s = 0; p = 1
        while s < len:
            i = s; z += z
            while i < len:
                a[i] = p*((4*i+4)^2-1)
                i += z
            s += s + 1; p += p
        return [a[i] for i in range(len)]
    A193365_list(30)  # Peter Luschny, Dec 22 2012

Formula

a(n) = A220371(n)/(4*A220371(n-1))
a(2^p*(2*n-1)) = 2^p*(2^(2*p+4)*(2*n-1)^2-1), p >= 0.

A220422 Numerators of coefficients of an expansion of the logarithm of the Catalan numbers.

Original entry on oeis.org

5, -1, 65, -1381, 50525, -2702761, 199360985, -19391512141, 2404879675445, -370371188237521, 69348874393137905, -15514534163557086901, 4087072509293123892365, -1252259641403629865468281, 441543893249023104553682825, -177519391579539289436664789661
Offset: 1

Views

Author

Peter Luschny, Dec 28 2012

Keywords

Comments

Let C(n) denote the Catalan numbers A000108 and S(n) = Sum_{k>=1} a(k)/(2*k*(4*n+3)^(2*k)) then log(C(n)) = (1/2)*(n*log(16)-3*log(n+3/4)-log(Pi)+S(n)).

Examples

			Let N = 4*n+3 then log(C(n)) = (n*log(16)-3*log(n+3/4)-log(Pi))/2+a(1)/(4*N^2)+a(2)/(8*N^4)+a(3)/(12*N^6)+a(4)/(16*N^8)+O(1/N^10).
		

References

  • Y. L. Luke, The Special Functions and their Approximations, Vol. 1. Academic Press, 1969.

Crossrefs

The exponential version is A220002.

Programs

  • Maple
    A220422 := n -> 4 - euler(2*n):
  • Sage
    def A220422Generator() :
        A = {-1:0, 0:1};
        k = 0; e = 1; i = 0; m = 0
        while True:
            An = 0; A[k + e] = 0; e = -e
            for j in (0..i) :
                An += A[k]; A[k] = An; k += e
            if e < 0 :
                yield 4 - A[-m]*(-1)^m
                m += 1
            i += 1
    A220422 = A220422Generator()
    [next(A220422) for n in (1..16)]

Formula

a(n) = -4^(2*n+1)*B_{2*n+1}(-1/4)/(2*n+1), B_{n}(x) the Bernoulli polynomials.
a(n) = 4 - E(2*n), E the Euler numbers A122045.

A239739 a(n) = n*4^(2*n+1).

Original entry on oeis.org

0, 64, 2048, 49152, 1048576, 20971520, 402653184, 7516192768, 137438953472, 2473901162496, 43980465111040, 774056185954304, 13510798882111488, 234187180623265792, 4035225266123964416, 69175290276410818560, 1180591620717411303424, 20070057552195992158208
Offset: 0

Views

Author

Peter Luschny, Mar 26 2014

Keywords

Comments

Appears in asymptotic expansions of the logarithm of the central binomial and the Catalan numbers. (See Kessler and Schiff, page 2.)

Crossrefs

Programs

  • Magma
    [n*4^(2*n+1): n in [0..25]]; // Vincenzo Librandi, Apr 25 2014
  • Mathematica
    CoefficientList[Series[64 x /(1 - 16 x)^2, {x, 0, 20}], x] (* Vincenzo Librandi, Apr 25 2014 *)
    LinearRecurrence[{32,-256},{0,64},20] (* Harvey P. Dale, May 06 2021 *)

Formula

G.f.: 64*x / (1 - 16*x)^2. [Bruno Berselli, Mar 26 2014]
(n-1)*a(n) - 16*n*a(n-1) = 0. [Bruno Berselli, Mar 26 2014]
a(n) = n*A013709(n). - Michel Marcus, Jan 30 2016
Showing 1-7 of 7 results.