cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A220018 Number of cyclotomic cosets of 3 mod 10^n.

Original entry on oeis.org

4, 11, 29, 71, 129, 203, 293, 399, 521, 659, 813, 983, 1169, 1371, 1589, 1823, 2073, 2339, 2621, 2919, 3233, 3563, 3909, 4271, 4649, 5043, 5453, 5879, 6321, 6779, 7253, 7743, 8249, 8771, 9309, 9863, 10433, 11019, 11621, 12239, 12873, 13523, 14189
Offset: 1

Views

Author

V. Raman, Jan 27 2013

Keywords

Examples

			a(2) = 11 because there are 11 cyclotomic cosets of 3 mod 100:
O(0) = {0},
O(1) = {1, 3, 9, 27, 81, 43, 29, 87, 61, 83, 49, 47, 41, 23, 69, 7, 21, 63, 89, 67},
O(2) = {2, 6, 18, 54, 62, 86, 58, 74, 22, 66, 98, 94, 82, 46, 38, 14, 42, 26, 78, 34},
O(4) = {4, 12, 36, 8, 24, 72, 16, 48, 44, 32, 96, 88, 64, 92, 76, 28, 84, 52, 56, 68},
O(5) = {5, 15, 45, 35},
O(10) = {10, 30, 90, 70},
O(11) = {11, 33, 99, 97, 91, 73, 19, 57, 71, 13, 39, 17, 51, 53, 59, 77, 31, 93, 79, 37},
O(20) = {20, 60, 80, 40},
O(25) = {25, 75},
O(50) = {50},
O(55) = {55, 65, 95, 85}.
		

Crossrefs

Cf. A006694.

Programs

  • Mathematica
    a[n_]:=DivisorSum[10^n,EulerPhi[#]/MultiplicativeOrder[3,#]&];Array[a,50] (* Ray Chandler, Jul 03 2023, after Jean-François Alcover *)
  • PARI
    A220018(n)=sumdiv(10^n, d, eulerphi(d)/znorder(Mod(3, d)))

Formula

a(n) = A221855(n) - 1 for all n >= 2, a(1) = A221855(1).
Empirical G.f.: x*(8*x^4-13*x^3-8*x^2+x-4) / (x-1)^3. [Colin Barker, Feb 03 2013]
Conjecture: a(n) = 8*n^2-14*n-1 for n>2. a(n) = 3*a(n-1)-3*a(n-2)+a(n-3) for n>5. [Colin Barker, Apr 14 2013]

Extensions

Edited by M. F. Hasler, Jan 28 2013