cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A220027 a(n) = product(i >= 0, P(n, i)^(2^i)) where P(n, i) = product(p prime, n/2^(i+1) < p <= n/2^i).

Original entry on oeis.org

1, 1, 2, 6, 12, 60, 180, 1260, 5040, 5040, 25200, 277200, 2494800, 32432400, 227026800, 227026800, 3632428800, 61751289600, 61751289600, 1173274502400, 29331862560000, 29331862560000, 322650488160000, 7420961227680000, 601097859442080000, 601097859442080000
Offset: 0

Views

Author

Peter Luschny, Mar 30 2013

Keywords

Comments

a(n) are the partial products of A219964(n).
a(n) divides n!, n!/a(n) = 1, 1, 1, 1, 2, 2, 4, 4, 8, 72, 144, 144, 192...
The swinging factorial (A056040) divides a(n), a(n)/n$ = 1, 1, 1, 1, 2,...
The primorial of n (A034386) divides a(n), a(n)/n# = 1, 1, 1, 1, 2, 2, 6,..
If p^k is the largest power of a prime dividing a(n) then k is 2^n for some n >= 0.
a(n) / A055773(n) is the largest square dividing a(n), a(n) / A055773(n) = A008833(a(n)).

Crossrefs

Cf. A055773.

Programs

  • Maple
    a := proc(n) local k; `if`(n < 2, 1,
    mul(k, k = select(isprime, [$iquo(n, 2)+1..n]))*a(iquo(n,2))^2) end:
    seq(a(i), i=0..25);
  • Sage
    def a(n) :
        if n < 2 : return 1
        return mul(k for k in prime_range(n//2+1,n+1))*a(n//2)^2
    [a(n) for n in (0..25)]