cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A220029 Number of n X 5 arrays of the minimum value of corresponding elements and their horizontal or diagonal neighbors in a random, but sorted with lexicographically nondecreasing rows and nonincreasing columns, 0..1 n X 5 array.

Original entry on oeis.org

5, 12, 30, 61, 111, 187, 297, 450, 656, 926, 1272, 1707, 2245, 2901, 3691, 4632, 5742, 7040, 8546, 10281, 12267, 14527, 17085, 19966, 23196, 26802, 30812, 35255, 40161, 45561, 51487, 57972, 65050, 72756, 81126, 90197, 100007, 110595, 122001, 134266
Offset: 1

Views

Author

R. H. Hardin, Dec 03 2012

Keywords

Comments

Column 5 of A220032.

Examples

			Some solutions for n=3:
..0..0..0..0..0....0..0..0..0..0....1..0..0..0..0....1..0..0..0..0
..1..0..0..0..0....1..1..0..0..0....1..0..0..0..0....1..1..0..0..0
..1..1..1..0..0....1..1..1..0..0....1..1..1..0..0....1..1..0..0..0
		

Crossrefs

Cf. A220032.

Formula

Empirical: a(n) = (1/24)*n^4 + (5/12)*n^3 + (11/24)*n^2 + (61/12)*n - 4 for n>1.
Conjectures from Colin Barker, Jul 30 2018: (Start)
G.f.: x*(5 - 13*x + 20*x^2 - 19*x^3 + 11*x^4 - 3*x^5) / (1 - x)^5.
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5) for n>6.
(End)

A220030 Number of n X 6 arrays of the minimum value of corresponding elements and their horizontal or diagonal neighbors in a random, but sorted with lexicographically nondecreasing rows and nonincreasing columns, 0..1 n X 6 array.

Original entry on oeis.org

6, 15, 42, 95, 192, 358, 626, 1038, 1646, 2513, 3714, 5337, 7484, 10272, 13834, 18320, 23898, 30755, 39098, 49155, 61176, 75434, 92226, 111874, 134726, 161157, 191570, 226397, 266100, 311172, 362138, 419556, 484018, 556151, 636618, 726119, 825392
Offset: 1

Views

Author

R. H. Hardin, Dec 03 2012

Keywords

Comments

Column 6 of A220032.

Examples

			Some solutions for n=3.
..1..1..0..0..0..0....0..0..0..0..0..0....1..0..0..0..0..0....0..0..0..0..0..0
..1..1..0..0..0..0....1..0..0..0..0..0....1..0..0..0..0..0....0..0..0..0..0..0
..1..1..1..1..0..0....1..0..0..0..0..0....1..0..0..0..0..0....1..1..0..0..0..0
		

Crossrefs

Cf. A220032.

Formula

Empirical: a(n) = (1/120)*n^5 + (1/8)*n^4 + (5/24)*n^3 + (15/8)*n^2 + (227/60)*n - 4 for n>1.
Conjectures from Colin Barker, Jul 30 2018: (Start)
G.f.: x*(3 - 6*x + 6*x^2 - 2*x^3)*(2 - 3*x + 4*x^2 - 2*x^3) / (1 - x)^6.
a(n) = 6*a(n-1) - 15*a(n-2) + 20*a(n-3) - 15*a(n-4) + 6*a(n-5) - a(n-6) for n>7.
(End)

A220031 Number of n X 7 arrays of the minimum value of corresponding elements and their horizontal or diagonal neighbors in a random, but sorted with lexicographically nondecreasing rows and nonincreasing columns, 0..1 n X 7 array.

Original entry on oeis.org

7, 18, 55, 137, 302, 613, 1165, 2094, 3587, 5893, 9335, 14323, 21368, 31097, 44269, 61792, 84741, 114377, 152167, 199805, 259234, 332669, 422621, 531922, 663751, 821661, 1009607, 1231975, 1493612, 1799857, 2156573, 2570180, 3047689, 3596737
Offset: 1

Views

Author

R. H. Hardin, Dec 03 2012

Keywords

Comments

Column 7 of A220032.

Examples

			Some solutions for n=3:
..1..1..0..0..0..0..0....1..1..1..0..0..0..0....1..0..0..0..0..0..0
..1..1..0..0..0..0..0....1..1..1..1..1..0..0....1..1..1..0..0..0..0
..1..1..0..0..0..0..0....1..1..1..1..1..0..0....1..1..1..1..0..0..0
		

Crossrefs

Cf. A220032.

Formula

Empirical: a(n) = (1/720)*n^6 + (7/240)*n^5 + (11/144)*n^4 + (25/48)*n^3 + (263/90)*n^2 + (29/20)*n - 4 for n>2.
Conjectures from Colin Barker, Jul 30 2018: (Start)
G.f.: x*(7 - 31*x + 76*x^2 - 115*x^3 + 113*x^4 - 66*x^5 + 17*x^6 + x^7 - x^8) / (1 - x)^7.
a(n) = 7*a(n-1) - 21*a(n-2) + 35*a(n-3) - 35*a(n-4) + 21*a(n-5) - 7*a(n-6) + a(n-7) for n>9.
(End)

A220033 Number of 3 X n arrays of the minimum value of corresponding elements and their horizontal or diagonal neighbors in a random, but sorted with lexicographically nondecreasing rows and nonincreasing columns, 0..1 3 X n array.

Original entry on oeis.org

4, 6, 10, 19, 30, 42, 55, 69, 84, 100, 117, 135, 154, 174, 195, 217, 240, 264, 289, 315, 342, 370, 399, 429, 460, 492, 525, 559, 594, 630, 667, 705, 744, 784, 825, 867, 910, 954, 999, 1045, 1092, 1140, 1189, 1239, 1290, 1342, 1395, 1449, 1504, 1560, 1617, 1675
Offset: 1

Views

Author

R. H. Hardin, Dec 03 2012

Keywords

Comments

Row 3 of A220032.

Examples

			Some solutions for n=3:
..1..0..0....0..0..0....1..0..0....0..0..0....1..0..0....0..0..0....0..0..0
..1..1..1....1..1..0....1..0..0....1..0..0....1..0..0....0..0..0....0..0..0
..1..1..1....1..1..1....1..1..1....1..0..0....1..0..0....0..0..0....1..1..0
		

Crossrefs

Cf. A220032.

Formula

Empirical: a(n) = (1/2)*n^2 + (13/2)*n - 15 for n>3.
Conjectures from Colin Barker, Jul 30 2018: (Start)
G.f.: x*(4 - 6*x + 4*x^2 + 3*x^3 - 3*x^4 - x^5) / (1 - x)^3.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n>6.
(End)

A220034 Number of 4 X n arrays of the minimum value of corresponding elements and their horizontal or diagonal neighbors in a random, but sorted with lexicographically nondecreasing rows and nonincreasing columns, 0..1 4 X n array.

Original entry on oeis.org

5, 8, 15, 34, 61, 95, 137, 187, 246, 315, 395, 487, 592, 711, 845, 995, 1162, 1347, 1551, 1775, 2020, 2287, 2577, 2891, 3230, 3595, 3987, 4407, 4856, 5335, 5845, 6387, 6962, 7571, 8215, 8895, 9612, 10367, 11161, 11995, 12870, 13787, 14747, 15751, 16800
Offset: 1

Views

Author

R. H. Hardin, Dec 03 2012

Keywords

Comments

Row 4 of A220032.

Examples

			Some solutions for n=3:
..0..0..0....0..0..0....1..0..0....0..0..0....0..0..0....1..1..1....0..0..0
..1..1..0....1..0..0....1..0..0....0..0..0....0..0..0....1..1..1....1..0..0
..1..1..1....1..1..1....1..1..1....0..0..0....0..0..0....1..1..1....1..0..0
..1..1..1....1..1..1....1..1..1....1..1..0....0..0..0....1..1..1....1..0..0
		

Crossrefs

Cf. A220032.

Formula

Empirical: a(n) = (1/6)*n^3 + (1/2)*n^2 + (43/3)*n - 45 for n>5.
Conjectures from Colin Barker, Jul 30 2018: (Start)
G.f.: x*(5 - 12*x + 13*x^2 + 2*x^3 - 12*x^4 + 3*x^5 + 2*x^6 - x^7 + x^8) / (1 - x)^4.
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4) for n>9.
(End)

A220035 Number of 5 X n arrays of the minimum value of corresponding elements and their horizontal or diagonal neighbors in a random, but sorted with lexicographically nondecreasing rows and nonincreasing columns, 0..1 5 X n array.

Original entry on oeis.org

6, 10, 21, 55, 111, 192, 302, 442, 618, 838, 1111, 1447, 1857, 2353, 2948, 3656, 4492, 5472, 6613, 7933, 9451, 11187, 13162, 15398, 17918, 20746, 23907, 27427, 31333, 35653, 40416, 45652, 51392, 57668, 64513, 71961, 80047, 88807, 98278, 108498
Offset: 1

Views

Author

R. H. Hardin, Dec 03 2012

Keywords

Comments

Row 5 of A220032.

Examples

			Some solutions for n=3:
..1..0..0....0..0..0....1..0..0....1..0..0....0..0..0....0..0..0....0..0..0
..1..1..1....1..0..0....1..0..0....1..0..0....1..0..0....1..1..0....0..0..0
..1..1..1....1..1..1....1..0..0....1..0..0....1..0..0....1..1..1....1..0..0
..1..1..1....1..1..1....1..1..1....1..0..0....1..0..0....1..1..1....1..0..0
..1..1..1....1..1..1....1..1..1....1..0..0....1..1..1....1..1..1....1..0..0
		

Crossrefs

Cf. A220032.

Formula

Empirical: a(n) = (1/24)*n^4 - (1/12)*n^3 + (95/24)*n^2 + (289/12)*n - 132 for n>6.
Conjectures from Colin Barker, Jul 30 2018: (Start)
G.f.: x*(6 - 20*x + 31*x^2 - 10*x^3 - 24*x^4 + 21*x^5 - 3*x^6 - 4*x^7 + 8*x^8 - 3*x^9 - x^10) / (1 - x)^5.
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5) for n>11.
(End)

A220036 Number of 6 X n arrays of the minimum value of corresponding elements and their horizontal or diagonal neighbors in a random, but sorted with lexicographically nondecreasing rows and nonincreasing columns, 0..1 6 X n array.

Original entry on oeis.org

7, 12, 28, 83, 187, 358, 613, 962, 1426, 2034, 2823, 3839, 5137, 6782, 8850, 11429, 14620, 18538, 23313, 29091, 36035, 44326, 54164, 65769, 79382, 95266, 113707, 135015, 159525, 187598, 219622, 256013, 297216, 343706, 395989, 454603, 520119
Offset: 1

Views

Author

R. H. Hardin, Dec 03 2012

Keywords

Comments

Row 6 of A220032.

Examples

			Some solutions for n=3:
..1..0..0....0..0..0....0..0..0....0..0..0....1..0..0....0..0..0....0..0..0
..1..0..0....0..0..0....0..0..0....1..0..0....1..1..1....1..0..0....0..0..0
..1..0..0....1..0..0....0..0..0....1..1..1....1..1..1....1..0..0....0..0..0
..1..0..0....1..0..0....1..1..0....1..1..1....1..1..1....1..1..1....1..0..0
..1..0..0....1..1..1....1..1..1....1..1..1....1..1..1....1..1..1....1..0..0
..1..1..1....1..1..1....1..1..1....1..1..1....1..1..1....1..1..1....1..1..1
		

Crossrefs

Cf. A220032.

Formula

Empirical: a(n) = (1/120)*n^5 - (1/12)*n^4 + (47/24)*n^3 - (23/12)*n^2 + (1771/30)*n - 323 for n>8.
Conjectures from Colin Barker, Jul 30 2018: (Start)
G.f.: x*(7 - 30*x + 61*x^2 - 45*x^3 - 26*x^4 + 59*x^5 - 35*x^6 + 3*x^7 + 24*x^8 - 21*x^9 + 3*x^10 + x^11 - x^12 + x^13) / (1 - x)^6.
a(n) = 6*a(n-1) - 15*a(n-2) + 20*a(n-3) - 15*a(n-4) + 6*a(n-5) - a(n-6) for n>14.
(End)

A220037 Number of 7 X n arrays of the minimum value of corresponding elements and their horizontal or diagonal neighbors in a random, but sorted with lexicographically nondecreasing rows and nonincreasing columns, 0..1 7 X n array.

Original entry on oeis.org

8, 14, 36, 119, 297, 626, 1165, 1963, 3088, 4630, 6711, 9492, 13175, 18010, 24304, 32431, 42843, 56082, 72793, 93738, 119811, 152054, 191674, 240061, 298807, 369726, 454875, 556576, 677439, 820386, 988676, 1185931, 1416163, 1683802, 1993725
Offset: 1

Views

Author

R. H. Hardin, Dec 03 2012

Keywords

Comments

Row 7 of A220032.

Examples

			Some solutions for n=3:
..0..0..0....1..0..0....0..0..0....0..0..0....0..0..0....0..0..0....0..0..0
..0..0..0....1..1..1....1..0..0....1..0..0....0..0..0....1..0..0....0..0..0
..1..0..0....1..1..1....1..0..0....1..1..1....0..0..0....1..0..0....0..0..0
..1..0..0....1..1..1....1..0..0....1..1..1....0..0..0....1..0..0....1..0..0
..1..0..0....1..1..1....1..1..1....1..1..1....0..0..0....1..0..0....1..0..0
..1..1..1....1..1..1....1..1..1....1..1..1....0..0..0....1..1..1....1..0..0
..1..1..1....1..1..1....1..1..1....1..1..1....1..1..0....1..1..1....1..1..1
		

Crossrefs

Cf. A220032.

Formula

Empirical: a(n) = (1/720)*n^6 - (7/240)*n^5 + (107/144)*n^4 - (209/48)*n^3 + (1609/45)*n^2 + (1913/60)*n - 813 for n>9.
Conjectures from Colin Barker, Jul 30 2018: (Start)
G.f.: x*(8 - 42*x + 106*x^2 - 119*x^3 + 10*x^4 + 108*x^5 - 123*x^6 + 58*x^7 + 36*x^8 - 68*x^9 + 33*x^10 - 10*x^11 - 2*x^12 + 10*x^13 - 3*x^14 - x^15) / (1 - x)^7.
a(n) = 7*a(n-1) - 21*a(n-2) + 35*a(n-3) - 35*a(n-4) + 21*a(n-5) - 7*a(n-6) + a(n-7) for n>16.
(End)

A220028 Number of n X n arrays of the minimum value of corresponding elements and their horizontal or diagonal neighbors in a random, but sorted with lexicographically nondecreasing rows and nonincreasing columns, 0..1 n X n array.

Original entry on oeis.org

2, 4, 10, 34, 111, 358, 1165, 3789, 12375, 40583, 133632, 441773
Offset: 1

Views

Author

R. H. Hardin Dec 03 2012

Keywords

Comments

Diagonal of A220032

Examples

			Some solutions for n=3
..0..0..0....1..0..0....0..0..0....0..0..0....0..0..0....0..0..0....1..0..0
..0..0..0....1..0..0....0..0..0....1..0..0....0..0..0....1..0..0....1..1..1
..1..0..0....1..1..1....0..0..0....1..1..1....1..1..0....1..0..0....1..1..1
		
Showing 1-9 of 9 results.