cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A220073 Mirror of the triangle A130517.

Original entry on oeis.org

1, 1, 2, 2, 1, 3, 3, 1, 2, 4, 4, 2, 1, 3, 5, 5, 3, 1, 2, 4, 6, 6, 4, 2, 1, 3, 5, 7, 7, 5, 3, 1, 2, 4, 6, 8, 8, 6, 4, 2, 1, 3, 5, 7, 9, 9, 7, 5, 3, 1, 2, 4, 6, 8, 10, 10, 8, 6, 4, 2, 1, 3, 5, 7, 9, 11, 11, 9, 7, 5, 3, 1, 2, 4, 6, 8, 10, 12, 12, 10, 8, 6, 4, 2
Offset: 1

Views

Author

Reinhard Zumkeller, Dec 03 2012

Keywords

Comments

T(n,k) = A130517(n,n-k+1), 1 <= k <= n;
T(n,n) = T(n,1) + 1.
From Boris Putievskiy, Jan 15 2013: (Start)
General case see A187760. Let m be natural number. Table T(n,k) n, k > 0, T(n,k)=n-k+1, if n>=k, T(n,k)=k-n+m-1, if n < k. Table T(n,k) read by antidiagonals. The first column of the table T(n,1) is the sequence of the natural numbers A000027. In all columns with number k (k > 1) the segment with the length of (k-1): {m+k-2, m+k-3, ..., m} shifts the sequence A000027. For m=1 the result is A220073, for m=2 the result is A143182. (End)
First inverse function (numbers of rows) for pairing function A209293. - Boris Putievskiy, Jan 28 2013

Examples

			From _Boris Putievskiy_, Jan 15 2013: (Start)
The start of the sequence as table:
1..1..2..3..4..5..6..7...
2..1..1..2..3..4..5..6...
3..2..1..1..2..3..4..5...
4..3..2..1..1..2..3..4...
5..4..3..2..1..1..2..3...
6..5..4..3..2..1..1..2...
7..6..5..4..3..2..1..1...
8..7..6..5..4..3..2..1...
. . .
The start of the sequence as triangle array read by rows:
1,
1, 2,
2, 1, 3,
3, 1, 2, 4,
4, 2, 1, 3, 5,
5, 3, 1, 2, 4, 6,
6, 4, 2, 1, 3, 5, 7,
7, 5, 3, 1, 2, 4, 6, 8,
. . .
Row number r contains r numbers: r-1, r-3,...,1,...r-2,r.
(End)
		

Crossrefs

Cf. A028310 (left edge), A000027 (right edge), A000012 (central terms), A000217 (row sums), A220075 (partial sums in rows), A002260, A000027, A143182, A187760, A209293.

Programs

  • Haskell
    a220073 n k = a220073_tabl !! (n-1) !! (k-1)
    a220073_row n = a220073_tabl !! (n-1)
    a220073_tabl = map reverse a130517_tabl
  • Mathematica
    max = 13;
    row[n_] := Join[Range[n, 1, -1], Range[max - n + 1]];
    T = Array[row, max];
    Table[T[[n - k + 1, k]], {n, 1, max}, {k, n, 1, -1}] // Flatten (* Jean-François Alcover, Sep 11 2017 *)

Formula

T(1,1)=1, for n>1: T(n,k)=T(n-1,n-k+1), 1<=k
From Boris Putievskiy, Jan 15 2013: (Start)
For the general case
a(n) = |(t+1)^2 - 2n| + m*floor((t^2+3t+2-2n)/(t+1)),
where t = floor((-1+sqrt(8*n-7))/2).
For m = 2
a(n) = |(t+1)^2 - 2n| + floor((t^2+3t+2-2n)/(t+1)),
where t=floor((-1+sqrt(8*n-7))/2). (End)