cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A220122 Number A(n,k) of tilings of a k X n rectangle using integer-sided rectangular tiles of area k; square array A(n,k), n>=0, k>=0, read by antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 2, 2, 5, 1, 1, 1, 1, 1, 3, 3, 8, 1, 1, 1, 1, 2, 1, 9, 4, 13, 1, 1, 1, 1, 1, 4, 1, 16, 6, 21, 1, 1, 1, 1, 2, 1, 7, 2, 35, 9, 34, 1, 1, 1, 1, 1, 3, 1, 13, 3, 65, 13, 55, 1, 1, 1, 1, 2, 2, 9, 1, 46, 4, 143, 19, 89, 1, 1
Offset: 0

Views

Author

Alois P. Heinz, Dec 05 2012

Keywords

Comments

Row n gives: 1 followed by period A003418(n): (1, A000045(n+1), ...) repeated; offset 0.

Examples

			A(4,4) = 9, because there are 9 tilings of a 4 X 4 rectangle using integer-sided rectangular tiles of area 4:
._._._._.  ._______.  .___.___.  ._.___._.  ._______.
| | | | |  |_______|  |   |   |  | |   | |  |_______|
| | | | |  |_______|  |___|___|  | |___| |  |   |   |
| | | | |  |_______|  |   |   |  | |   | |  |___|___|
|_|_|_|_|  |_______|  |___|___|  |_|___|_|  |_______|
._._.___.  ._______.  .___._._.  .___.___.
| | |   |  |_______|  |   | | |  |   |   |
| | |___|  |_______|  |___| | |  |___|___|
| | |   |  |   |   |  |   | | |  |_______|
|_|_|___|  |___|___|  |___|_|_|  |_______|
Square array A(n,k) begins:
1, 1,  1,  1,   1, 1,    1, 1,    1,  1,   1, ...
1, 1,  1,  1,   1, 1,    1, 1,    1,  1,   1, ...
1, 1,  2,  1,   2, 1,    2, 1,    2,  1,   2, ...
1, 1,  3,  2,   3, 1,    4, 1,    3,  2,   3, ...
1, 1,  5,  3,   9, 1,    7, 1,    9,  3,   5, ...
1, 1,  8,  4,  16, 2,   13, 1,   16,  4,   9, ...
1, 1, 13,  6,  35, 3,   46, 1,   35,  6,  15, ...
1, 1, 21,  9,  65, 4,   88, 2,   65,  9,  26, ...
1, 1, 34, 13, 143, 5,  209, 3,  250, 13,  44, ...
1, 1, 55, 19, 281, 6,  473, 4,  495, 37,  75, ...
1, 1, 89, 28, 590, 8, 1002, 5, 1209, 64, 254, ...
		

Crossrefs

Columns k=0+1, 2-11, 13 give: A000012, A000045(n+1), A000930, A220123, A003520, A220124, A005709, A220125, A220126, A220127, A017905(n+11), A017907(n+13).
Main diagonal gives: A182106.

Programs

  • Maple
    b:= proc(n, l) option remember; local i, k, m, s, t;
          if max(l[])>n then 0 elif n=0 or l=[] then 1
        elif min(l[])>0 then t:=min(l[]); b(n-t, map(h->h-t, l))
        else for k do if l[k]=0 then break fi od; s, m:=0, nops(l);
             for i from k to m while l[i]=0 do if irem(m, 1+i-k, 'q')=0
               and q<=n then s:= s+ b(n, [l[j]$j=1..k-1, q$j=k..i,
               l[j]$j=i+1..m]) fi od; s
          fi
        end:
    A:= (n, k)-> b(n, [0$k]):
    seq(seq(A(n, d-n), n=0..d), d=0..14);
  • Mathematica
    b[n_, l_] := b[n, l] = Module[{i, k, m, s, t}, Which[Max[l] > n, 0, n == 0 || l == {}, 1, Min[l] > 0, t = Min[l]; b[n-t, l-t], True, k = Position[l, 0, 1][[1, 1]]; {s, m} = {0, Length[l]}; For[ i = k , i <= m && l[[i]] == 0, i++, If[Mod[m, 1+i-k ] == 0 && (q = Quotient[m, 1+i-k]) <= n, s = s+b[n, Join[ l[[1 ;; k-1]], Array[q &, i-k+1], l[[i+1 ;; m]] ]]]]; s]]; a[n_, k_] := b[n, Array[0&, k]]; Table[Table[a[n, d-n], {n, 0, d}], {d, 0, 14}] // Flatten (* Jean-François Alcover, Dec 19 2013, translated from Maple *)

Formula

For prime p column p has g.f.: 1/(1-x-x^p) or a_p(n) = Sum_{j=0..floor(n/p)} C(n-(p-1)*j,j).