cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A220123 Number of tilings of a 4 X n rectangle using integer-sided rectangular tiles of area 4.

Original entry on oeis.org

1, 1, 2, 3, 9, 16, 35, 65, 143, 281, 590, 1174, 2440, 4925, 10142, 20563, 42178, 85819, 175632, 357875, 731536, 1491966, 3047879, 6218844, 12699982, 25919176, 52922491, 108022099, 220541999, 450186874, 919074255, 1876149465, 3830134125, 7818778884, 15961716918
Offset: 0

Views

Author

Alois P. Heinz, Dec 05 2012

Keywords

Examples

			a(3) = 3, because there are 3 tilings of a 4 X 3 rectangle using integer-sided rectangular tiles of area 4:
._._._.   ._.___.   .___._.
| | | |   | |   |   |   | |
| | | |   | |___|   |___| |
| | | |   | |   |   |   | |
|_|_|_|   |_|___|   |___|_|
		

Crossrefs

Column k=4 of A220122. Cf. A005178.

Programs

  • Maple
    gf:= -(x-1)*(x+1)*(x^2+1)/(x^8-x^6+x^5-5*x^4-x^2-x+1):
    a:= n-> coeff(series(gf, x, n+1), x, n):
    seq(a(n), n=0..50);

Formula

G.f.: -(x-1)*(x+1)*(x^2+1) / (x^8 - x^6 + x^5 - 5*x^4 - x^2 - x + 1).
a(n) = a(n-1) + a(n-2) + 5*a(n-4) - a(n-5) + a(n-6) - a(n-8). - Caleb Wagner, Nov 06 2013
a(2*n+1) = Sum_{k=0..n} A005178(k+1)*a(2*n-2*k). - Shravan Haribalaraman, Aug 29 2022