A220123 Number of tilings of a 4 X n rectangle using integer-sided rectangular tiles of area 4.
1, 1, 2, 3, 9, 16, 35, 65, 143, 281, 590, 1174, 2440, 4925, 10142, 20563, 42178, 85819, 175632, 357875, 731536, 1491966, 3047879, 6218844, 12699982, 25919176, 52922491, 108022099, 220541999, 450186874, 919074255, 1876149465, 3830134125, 7818778884, 15961716918
Offset: 0
Examples
a(3) = 3, because there are 3 tilings of a 4 X 3 rectangle using integer-sided rectangular tiles of area 4: ._._._. ._.___. .___._. | | | | | | | | | | | | | | | |___| |___| | | | | | | | | | | | |_|_|_| |_|___| |___|_|
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
- Caleb Wagner, Number of tilings of a 4 X n rectangle using integer sided rectangular tiles of area 4, Nov 2013
- Index entries for linear recurrences with constant coefficients, signature (1,1,0,5,-1,1,0,-1).
Programs
-
Maple
gf:= -(x-1)*(x+1)*(x^2+1)/(x^8-x^6+x^5-5*x^4-x^2-x+1): a:= n-> coeff(series(gf, x, n+1), x, n): seq(a(n), n=0..50);
Formula
G.f.: -(x-1)*(x+1)*(x^2+1) / (x^8 - x^6 + x^5 - 5*x^4 - x^2 - x + 1).
a(n) = a(n-1) + a(n-2) + 5*a(n-4) - a(n-5) + a(n-6) - a(n-8). - Caleb Wagner, Nov 06 2013
a(2*n+1) = Sum_{k=0..n} A005178(k+1)*a(2*n-2*k). - Shravan Haribalaraman, Aug 29 2022