cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A161671 a(n) = prime(n) - A141468(n).

Original entry on oeis.org

2, 2, 1, 1, 3, 4, 7, 7, 9, 14, 15, 19, 21, 22, 25, 29, 34, 35, 40, 43, 43, 47, 50, 55, 62, 65, 65, 68, 69, 71, 83, 86, 91, 91, 100, 101, 106, 111, 113, 118, 123, 124, 133, 133, 135, 136, 147, 158, 161, 161, 164, 169, 169, 177, 182, 187, 192, 193, 197, 200, 201, 209
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Jun 16 2009, Dec 03 2009

Keywords

Examples

			2(=2-0), 2(=3-1), 1(=5-4), 1(=7-6), 3(=11-8), 4(=13-9), 7(=17-10), 7(=19-12), 9(=23-14), 14(=29-15), etc.
		

Crossrefs

Programs

Formula

a(n) = A000040(n) - A141468(n).
a(n+2) = A168563(n).
a(n) = A000040(n) - A018252(n-1), if n >= 2. - Omar E. Pol, Oct 21 2011
a(n) ~ n log n. - Charles R Greathouse IV, Dec 21 2011

Extensions

Edited by N. J. A. Sloane, Jun 30 2009
207 replaced with 209 by R. J. Mathar, Oct 04 2009
Edited by Omar E. Pol, Oct 21 2011

A214627 Primes in A161671.

Original entry on oeis.org

2, 3, 7, 19, 29, 43, 47, 71, 83, 101, 113, 193, 197, 229, 241, 271, 283, 293, 311, 347, 383, 439, 457, 463, 491, 499, 523, 587, 619, 643, 683, 733, 797, 827, 857, 863, 919, 991, 1021, 1031, 1091, 1151, 1187, 1289, 1367, 1549, 1567, 1619, 1637, 1693, 1697, 1733, 1741, 1811, 1867, 1871, 1907
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Aug 08 2012

Keywords

Crossrefs

Programs

  • Maple
    isA214627 := proc(n)
            if isprime(n) then
                    for j from 1 do
                            if A161671(j) = n then
                                    return true;
                            elif j >7 and A161671(j) > n then
                                    return false;
                            end if;
                    end do:
            else
                    false;
            end if;
    end proc:
    for n from 2 to 2000 do
            if isA214627(n) then
                    printf("%d,",n) ;
            end if;
    end do; # R. J. Mathar, Aug 09 2012
  • Mathematica
    f[n_] := FixedPoint[n + PrimePi@ # &, n + PrimePi@ n]; Union@ Reap[Do[If[PrimeQ[#], Sow[#]] &[Prime[i] - f[i - 1] ], {i, 350}] ][[-1, -1]] (* Michael De Vlieger, Mar 22 2022, after Robert G. Wilson v at A141468 *)

Formula

A161671 INTERSECT A000040.
Showing 1-2 of 2 results.