A214627 Primes in A161671.
2, 3, 7, 19, 29, 43, 47, 71, 83, 101, 113, 193, 197, 229, 241, 271, 283, 293, 311, 347, 383, 439, 457, 463, 491, 499, 523, 587, 619, 643, 683, 733, 797, 827, 857, 863, 919, 991, 1021, 1031, 1091, 1151, 1187, 1289, 1367, 1549, 1567, 1619, 1637, 1693, 1697, 1733, 1741, 1811, 1867, 1871, 1907
Offset: 1
Keywords
Links
- Michael De Vlieger, Table of n, a(n) for n = 1..10000
- Michael De Vlieger, Scatterplot of A161671(n), n = 1..120, showing and labeling primes p in this sequence in red and blue. The red primes are duplicated and are listed in A220220. We plot in green duplicated composite terms.
Programs
-
Maple
isA214627 := proc(n) if isprime(n) then for j from 1 do if A161671(j) = n then return true; elif j >7 and A161671(j) > n then return false; end if; end do: else false; end if; end proc: for n from 2 to 2000 do if isA214627(n) then printf("%d,",n) ; end if; end do; # R. J. Mathar, Aug 09 2012
-
Mathematica
f[n_] := FixedPoint[n + PrimePi@ # &, n + PrimePi@ n]; Union@ Reap[Do[If[PrimeQ[#], Sow[#]] &[Prime[i] - f[i - 1] ], {i, 350}] ][[-1, -1]] (* Michael De Vlieger, Mar 22 2022, after Robert G. Wilson v at A141468 *)
Comments