A259493 Number of n-digit semiprimes whose prime factors concatenated larger to the right of smaller form an n-digit prime (in decimal).
0, 1, 21, 148, 1078, 7898, 60843, 486390, 3969956, 33123937, 280486145, 2411806083
Offset: 1
Examples
21=3*7 produces the prime 37 via the described concatenation, and it is the only 2-digit semiprime that does produce a 2-digit prime like this, making a(2)=1.
Crossrefs
Cf. A220296.
Programs
-
Mathematica
f[n_] := Block[{g, s}, s = Select[Range[10^(n - 1), 10^n - 1], PrimeOmega@ # == 2 &]; g[x_] := FromDigits[IntegerDigits[First /@ FactorInteger[x]] // Flatten]; Select[s, And[IntegerLength[g@ #] == n, PrimeQ@ g@ #] &]]; Length@ f@ # & /@ Range@ 6 (* Michael De Vlieger, Jul 01 2015 *)
-
PARI
{ \\Variables: E changes with every other\\ \\change in n as bounding smaller prime\\ \\p, b and B are the bounding powers of\\ \\10, e represents the power of 10 just\\ \\above p, q is the larger prime, and c is\\ \\the count of those pq satisfying the\\ \\criterion.\\ print(0);n=2;E=10;b=10;B==100; while(1, p=2;e=10;c=0;while(p
e,e*=10)); print(c);n++;b*=10;B*=10;if(n%2==0,E*=10)) }
Extensions
a(12) from Giovanni Resta, Jul 13 2015
Comments