A220377 Number of partitions of n into three distinct and mutually relatively prime parts.
1, 0, 2, 1, 3, 1, 6, 1, 7, 3, 7, 3, 14, 3, 15, 6, 14, 6, 25, 6, 22, 10, 25, 9, 42, 8, 34, 15, 37, 15, 53, 13, 48, 22, 53, 17, 78, 17, 65, 30, 63, 24, 99, 24, 88, 35, 84, 30, 126, 34, 103, 45, 103, 38, 166, 35, 124, 57, 128, 51, 184, 44, 150, 67, 172, 52, 218
Offset: 6
Keywords
Examples
For n=10 we have three such partitions: 1+2+7, 1+4+5 and 2+3+5. From _Gus Wiseman_, Oct 14 2020: (Start) The a(6) = 1 through a(20) = 15 triples (empty column indicated by dot, A..H = 10..17): 321 . 431 531 532 731 543 751 743 753 754 971 765 B53 875 521 541 651 752 951 853 B51 873 B71 974 721 732 761 B31 871 D31 954 D51 A73 741 851 952 972 A91 831 941 B32 981 B54 921 A31 B41 A71 B72 B21 D21 B43 B81 B52 C71 B61 D43 C51 D52 D32 D61 D41 E51 E31 F41 F21 G31 H21 (End)
Links
- Fausto A. C. Cariboni, Table of n, a(n) for n = 6..10000 (terms 6..1000 from Seiichi Manyama)
Crossrefs
A023022 is the 2-part version.
A101271 is the relative prime instead of pairwise coprime version.
A220377*6 is the ordered version.
A307719 is the non-strict version.
A337461 is the non-strict ordered version.
A337563 is the case with no 1's.
A337605 is the pairwise non-coprime instead of pairwise coprime version.
A318717 counts pairwise non-coprime strict partitions.
A326675 ranks pairwise coprime sets.
A327516 counts pairwise coprime partitions.
A337601 counts 3-part partitions whose distinct parts are pairwise coprime.
Programs
-
Mathematica
Table[Length@Select[ IntegerPartitions[ n, {3}], #[[1]] != #[[2]] != #[[3]] && GCD[#[[1]], #[[2]]] == 1 && GCD[#[[1]], #[[3]]] == 1 && GCD[#[[2]], #[[3]]] == 1 &], {n, 6, 100}] Table[Count[IntegerPartitions[n,{3}],?(CoprimeQ@@#&&Length[ Union[#]] == 3&)],{n,6,100}] (* _Harvey P. Dale, May 22 2020 *)
-
PARI
a(n)=my(P=partitions(n));sum(i=1,#P,#P[i]==3&&P[i][1]
Formula
a(n > 2) = A307719(n) - 1. - Gus Wiseman, Oct 15 2020
Comments