A220394 A modified Engel expansion of exp(1).
1, 1, 2, 3, 4, 5, 8, 2, 10, 99, 20, 2, 2, 2, 2, 2, 2, 3, 6, 4, 8, 14, 2, 2, 4, 6, 10, 252, 81, 30, 28, 31, 60, 4, 6, 3, 4, 2, 2, 2, 2, 19, 54, 8, 6, 22, 63, 4, 2, 4, 6, 2, 2, 5, 12, 4, 2, 2, 2, 2, 6, 15, 10, 348, 172, 2, 2, 4, 6, 4, 30, 207, 220
Offset: 1
Links
- Peter Bala, A modified Engel expansion
- Wikipedia, Engel Expansion
Crossrefs
Formula
Let h(x) = x*(floor(1/x) + (floor(1/x))^2) - floor(1/x) where x = exp(1) - 2, then a(1) = a(2) = 1, a(3) = ceiling(1/x) and, for n >= 1, a(n+3) = floor(1/h^(n-1)(x))*(1 + floor(1/h^(n)(x))).
Put P(n) = Product_{k = 1..n} a(k). Then we have the Egyptian fraction series expansion exp(1) = Sum_{n>=1} 1/P(n) = 1/1 + 1/1 + 1/2 + 1/(2*3) + 1/(2*3*4) + 1/(2*3*4*5) + 1/(2*3*4*5*8) + .... For n >= 3, the error made in truncating this series to n terms is less than the n-th term.
Comments