cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A220397 A modified Engel expansion of sqrt(2).

Original entry on oeis.org

1, 3, 6, 4, 2, 2, 4, 6, 23, 66, 108, 7738, 290, 9, 24, 32, 30, 4, 6, 3, 6, 24, 22, 2, 6, 20, 6, 9, 16, 5, 12, 4, 12, 22, 5, 8, 3, 6, 4, 2, 2, 4, 6, 2, 2, 2, 2, 13, 24, 2, 3, 4, 2, 2, 2, 2, 23, 44, 21, 40, 8, 14, 3, 6, 12, 10, 11, 30, 4, 4, 9, 4, 3, 4, 2, 16, 45, 46, 528
Offset: 1

Views

Author

Peter Bala, Dec 13 2012

Keywords

Comments

See A220393 for a definition of the modified Engel expansion of a positive real number. For further details see the Bala link.

Crossrefs

Formula

Let h(x) = x*(floor(1/x) + (floor(1/x))^2) - floor(1/x). Let x = sqrt(2) - 1. Then a(1) = 1, a(2) = ceiling(1/x) and, for n >= 1, a(n+2) = floor(1/h^(n-1)(x))*(1 + floor(1/h^(n)(x))).
Put P(n) = Product_{k = 1..n} a(k). Then we have the Egyptian fraction series expansion sqrt(2) = Sum_{n>=1} 1/P(n) = 1 + 1/3 + 1/(3*6) + 1/(3*6*4) + 1/(3*6*4*2) + 1/(3*6*4*2*2) + .... For n >= 2, the error made in truncating this series to n terms is less than the n-th term.