A220412 Triangle read by rows, the coefficients of J. L. Fields generalized Bernoulli polynomials.
1, 0, 1, 0, 1, 5, 0, 4, 21, 35, 0, 18, 101, 210, 175, 0, 48, 286, 671, 770, 385, 0, 33168, 207974, 531531, 715715, 525525, 175175, 0, 8640, 56568, 154466, 231231, 205205, 105105, 25025, 0, 1562544, 10615548, 30582796, 49534277, 49689640, 31481450, 11911900
Offset: 0
Examples
The coefficients T(n,k): [0], [1] [1], [0, 1] [2], [0, 1, 5] [3], [0, 4, 21, 35] [4], [0, 18, 101, 210, 175] [5], [0, 48, 286, 671, 770, 385] The Fields polynomials: F_0 (x) = 1 / 1 F_2 (x) = x / (-6) F_4 (x) = (5*x^2+x) / 60 F_6 (x) = (35*x^3+21*x^2+4*x) / (-504) F_8 (x) = (175*x^4+210*x^3+101*x^2+18*x) / 2160 F_10(x) = (385*x^5+770*x^4+671*x^3+286*x^2+48*x) / (-3168)
References
- Y. L. Luke, The Special Functions and their Approximations, Vol. 1. Academic Press, 1969, page 34.
Links
- J. L. Fields, A note on the asymptotic expansion of a ratio of gamma functions, Proc. Edinburgh Math. Soc. 15 (1) (1966), 43-45.
Crossrefs
Cf. A220411.
Programs
-
Maple
FieldsPoly := proc(n,x) local recP, P; recP := proc(n,x) option remember; local k; if n = 0 then return(1) fi; -2*x*add(binomial(n-1,2*k+1)* bernoulli(2*k+2)/(2*k+2)*recP(n-2*k-2,x), k=0..(n/2-1)) end: P := recP(n,x); (-1)^iquo(n,2)*denom(P); sort(expand(P*%)) end: with(PolynomialTools): A220412_row := n -> CoefficientList(FieldsPoly( 2*i,x),x): seq(A220412_row(i),i=0..8);
-
Mathematica
F[0, ] = 1; F[n, x_] := F[n, x] = -2*x*Sum[Binomial[n-1, 2*k+1]*BernoulliB[2*k+2]/(2*k+2)*F[n-2*k-2, x], {k, 0, n/2-1}]; t[n_, k_] := Coefficient[(-1)^Mod[n, 2]*F[2*n, x] // Together // Numerator, x, k]; Table[t[n, k], {n, 0, 8}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jan 09 2014 *)
-
Sage
@CachedFunction def FieldsPoly(n): A = PolynomialRing(QQ, 'x') x = A.gen() if n == 0: return A(1) return -2*x*add(binomial(n-1,2*k+1)*bernoulli(2*k+2)/(2*k+2)*FieldsPoly(n-2*k-2) for k in (0..n-1)) def FieldsCoeffs(n): P = FieldsPoly(n) d = (-1)^(n//2) * denominator(P) return list(d * P) A220412_row = lambda n: FieldsCoeffs(2*n)
Formula
See Y. L. Luke 2.8(3) for the generalized Bernoulli polynomials and 2.11(16) for the special case of Fields polynomials. The Maple and Sage programs give a recursive definition.
Comments