cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A220412 Triangle read by rows, the coefficients of J. L. Fields generalized Bernoulli polynomials.

Original entry on oeis.org

1, 0, 1, 0, 1, 5, 0, 4, 21, 35, 0, 18, 101, 210, 175, 0, 48, 286, 671, 770, 385, 0, 33168, 207974, 531531, 715715, 525525, 175175, 0, 8640, 56568, 154466, 231231, 205205, 105105, 25025, 0, 1562544, 10615548, 30582796, 49534277, 49689640, 31481450, 11911900
Offset: 0

Views

Author

Peter Luschny, Dec 30 2012

Keywords

Comments

The Fields polynomials are defined: F_{2*n}(x) = sum(k=0..n, x^k*T(n,k)/A220411(n)) and F_{2*n+1}(x) = 0. See A220002 for an application to the asymptotic expansion of the Catalan numbers.

Examples

			The coefficients T(n,k):
[0], [1]
[1], [0,  1]
[2], [0,  1,   5]
[3], [0,  4,  21,  35]
[4], [0, 18, 101, 210, 175]
[5], [0, 48, 286, 671, 770, 385]
The Fields polynomials:
F_0 (x) =  1 / 1
F_2 (x) =  x / (-6)
F_4 (x) = (5*x^2+x) / 60
F_6 (x) = (35*x^3+21*x^2+4*x) / (-504)
F_8 (x) = (175*x^4+210*x^3+101*x^2+18*x) / 2160
F_10(x) = (385*x^5+770*x^4+671*x^3+286*x^2+48*x) / (-3168)
		

References

  • Y. L. Luke, The Special Functions and their Approximations, Vol. 1. Academic Press, 1969, page 34.

Crossrefs

Cf. A220411.

Programs

  • Maple
    FieldsPoly := proc(n,x) local recP, P; recP := proc(n,x) option remember; local k; if n = 0 then return(1) fi; -2*x*add(binomial(n-1,2*k+1)* bernoulli(2*k+2)/(2*k+2)*recP(n-2*k-2,x), k=0..(n/2-1)) end:
    P := recP(n,x); (-1)^iquo(n,2)*denom(P); sort(expand(P*%)) end:
    with(PolynomialTools): A220412_row := n -> CoefficientList(FieldsPoly( 2*i,x),x): seq(A220412_row(i),i=0..8);
  • Mathematica
    F[0, ] = 1; F[n, x_] := F[n, x] = -2*x*Sum[Binomial[n-1, 2*k+1]*BernoulliB[2*k+2]/(2*k+2)*F[n-2*k-2, x], {k, 0, n/2-1}]; t[n_, k_] := Coefficient[(-1)^Mod[n, 2]*F[2*n, x] // Together // Numerator, x, k]; Table[t[n, k], {n, 0, 8}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jan 09 2014 *)
  • Sage
    @CachedFunction
    def FieldsPoly(n):
        A = PolynomialRing(QQ, 'x')
        x = A.gen()
        if n == 0: return A(1)
        return -2*x*add(binomial(n-1,2*k+1)*bernoulli(2*k+2)/(2*k+2)*FieldsPoly(n-2*k-2) for k in (0..n-1))
    def FieldsCoeffs(n):
        P = FieldsPoly(n)
        d = (-1)^(n//2) * denominator(P)
        return list(d * P)
    A220412_row = lambda n: FieldsCoeffs(2*n)

Formula

See Y. L. Luke 2.8(3) for the generalized Bernoulli polynomials and 2.11(16) for the special case of Fields polynomials. The Maple and Sage programs give a recursive definition.