A220419 Number of ways to write n=x+y (x>0, y>0) with 2x+1, 2y-1 and x^3+2y^3 all prime.
0, 0, 1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 3, 1, 1, 0, 2, 1, 2, 1, 2, 1, 2, 0, 1, 1, 0, 2, 1, 1, 2, 2, 1, 1, 2, 1, 1, 4, 2, 1, 1, 1, 3, 2, 1, 0, 1, 0, 1, 1, 1, 1, 1, 0, 3, 3, 1, 4, 1, 1, 0, 4, 2, 2, 3, 0, 1, 3, 2, 2, 1, 0, 5, 2, 0, 0, 1, 2, 2, 2, 2, 1, 2, 2, 3, 3, 2, 0, 1, 0, 2, 2, 4, 3, 2, 1, 3, 4, 2, 3
Offset: 1
Keywords
Examples
a(25)=1 since 25=3+22 with 2*3+1, 2*22-1 and 3^3+2*22^3=21323 all prime. a(26)=1 since 26=11+15 with 2*11+1, 2*15-1 and 11^3+2*15^3=8081 all prime.
Links
- Zhi-Wei Sun, Table of n, a(n) for n = 1..20000
- D. R. Heath-Brown, Primes represented by x^3 + 2y^3. Acta Mathematica 186 (2001), pp. 1-84.
- Zhi-Wei Sun, Conjectures involving primes and quadratic forms, arXiv:1211.1588 [math.NT], 2012-2017.
Programs
-
Mathematica
a[n_]:=a[n]=Sum[If[PrimeQ[2k+1]==True&&PrimeQ[2(n-k)-1]==True&&PrimeQ[k^3+2(n-k)^3]==True,1,0],{k,1,n-1}] Do[Print[n," ",a[n]],{n,1,1000}]
Comments