cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A220419 Number of ways to write n=x+y (x>0, y>0) with 2x+1, 2y-1 and x^3+2y^3 all prime.

Original entry on oeis.org

0, 0, 1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 3, 1, 1, 0, 2, 1, 2, 1, 2, 1, 2, 0, 1, 1, 0, 2, 1, 1, 2, 2, 1, 1, 2, 1, 1, 4, 2, 1, 1, 1, 3, 2, 1, 0, 1, 0, 1, 1, 1, 1, 1, 0, 3, 3, 1, 4, 1, 1, 0, 4, 2, 2, 3, 0, 1, 3, 2, 2, 1, 0, 5, 2, 0, 0, 1, 2, 2, 2, 2, 1, 2, 2, 3, 3, 2, 0, 1, 0, 2, 2, 4, 3, 2, 1, 3, 4, 2, 3
Offset: 1

Views

Author

Zhi-Wei Sun, Dec 14 2012

Keywords

Comments

Conjecture: a(n)>0 for all n>527.
This has been verified for n up to 2*10^7. It implies the Goldbach conjecture since 2(x+y)=(2x+1)+(2y-1).
Zhi-Wei Sun also made the following similar conjectures:
(1) Each integer n>1544 can be written as x+y (x>0, y>0) with 2x-1, 2y+1 and x^3+2y^3 all prime.
(2) Any odd number n>2060 can be written as 2p+q with p, q and p^3+2((q-1)/2)^3 all prime.
(3) Every integer n>25537 can be written as p+q (q>0) with p, p-6, p+6 and p^3+2q^3 all prime.
(4) Any even number n>1194 can be written as x+y (x>0, y>0) with x^3+2y^3 and 2x^3+y^3 both prime.
(5) Each integer n>3662 can be written as x+y (x>0, y>0) with 3(xy)^3-1 and 3(xy)^3+1 both prime.
(6) Any integer n>22 can be written as x+y (x>0, y>0) with (xy)^4+1 prime. Also, any integer n>7425 can be written as x+y (x>0, y>0) with 2(xy)^4-1 and 2(xy)^4+1 both prime.
(7) Every odd integer n>1 can be written as x+y (x>0, y>0) with x^4+y^2 prime. Moreover, any odd number n>15050 can be written as p+2q with p, q and p^4+(2q)^2 all prime.
Conjectures (1) to (7) verified up to 10^6. - Mauro Fiorentini, Sep 22 2023

Examples

			a(25)=1 since 25=3+22 with 2*3+1, 2*22-1 and 3^3+2*22^3=21323 all prime.
a(26)=1 since 26=11+15 with 2*11+1, 2*15-1 and 11^3+2*15^3=8081 all prime.
		

Crossrefs

Programs

  • Mathematica
    a[n_]:=a[n]=Sum[If[PrimeQ[2k+1]==True&&PrimeQ[2(n-k)-1]==True&&PrimeQ[k^3+2(n-k)^3]==True,1,0],{k,1,n-1}]
    Do[Print[n," ",a[n]],{n,1,1000}]