cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A220422 Numerators of coefficients of an expansion of the logarithm of the Catalan numbers.

Original entry on oeis.org

5, -1, 65, -1381, 50525, -2702761, 199360985, -19391512141, 2404879675445, -370371188237521, 69348874393137905, -15514534163557086901, 4087072509293123892365, -1252259641403629865468281, 441543893249023104553682825, -177519391579539289436664789661
Offset: 1

Views

Author

Peter Luschny, Dec 28 2012

Keywords

Comments

Let C(n) denote the Catalan numbers A000108 and S(n) = Sum_{k>=1} a(k)/(2*k*(4*n+3)^(2*k)) then log(C(n)) = (1/2)*(n*log(16)-3*log(n+3/4)-log(Pi)+S(n)).

Examples

			Let N = 4*n+3 then log(C(n)) = (n*log(16)-3*log(n+3/4)-log(Pi))/2+a(1)/(4*N^2)+a(2)/(8*N^4)+a(3)/(12*N^6)+a(4)/(16*N^8)+O(1/N^10).
		

References

  • Y. L. Luke, The Special Functions and their Approximations, Vol. 1. Academic Press, 1969.

Crossrefs

The exponential version is A220002.

Programs

  • Maple
    A220422 := n -> 4 - euler(2*n):
  • Sage
    def A220422Generator() :
        A = {-1:0, 0:1};
        k = 0; e = 1; i = 0; m = 0
        while True:
            An = 0; A[k + e] = 0; e = -e
            for j in (0..i) :
                An += A[k]; A[k] = An; k += e
            if e < 0 :
                yield 4 - A[-m]*(-1)^m
                m += 1
            i += 1
    A220422 = A220422Generator()
    [next(A220422) for n in (1..16)]

Formula

a(n) = -4^(2*n+1)*B_{2*n+1}(-1/4)/(2*n+1), B_{n}(x) the Bernoulli polynomials.
a(n) = 4 - E(2*n), E the Euler numbers A122045.