A220455 Number of ways to write n=x+y (x>0, y>0) with 3x-2, 3x+2 and 2xy+1 all prime.
0, 0, 0, 1, 1, 2, 0, 2, 3, 2, 1, 2, 1, 1, 4, 4, 1, 2, 2, 3, 3, 2, 2, 5, 1, 4, 1, 1, 5, 4, 1, 2, 5, 5, 3, 8, 3, 6, 5, 5, 4, 4, 2, 4, 5, 3, 1, 8, 3, 4, 4, 1, 2, 8, 6, 3, 4, 5, 4, 4, 7, 1, 3, 6, 5, 7, 3, 3, 8, 2, 4, 5, 2, 6, 10, 7, 1, 5, 5, 6, 8, 6, 4, 5, 5, 7, 5, 4, 4, 11, 4, 5, 5, 5, 6, 6, 3, 1, 12, 8
Offset: 1
Keywords
Examples
a(25)=1 since 25=13+12 with 3*13-2, 3*13+2 and 2*13*12+1=313 all prime.
Links
- Zhi-Wei Sun, Table of n, a(n) for n = 1..10000
- Zhi-Wei Sun, Conjectures involving primes and quadratic forms, arXiv:1211.1588 [math.NT], 2012-2017.
Crossrefs
Programs
-
Mathematica
a[n_]:=a[n]=Sum[If[PrimeQ[3k-2]==True&&PrimeQ[3k+2]==True&&PrimeQ[2k(n-k)+1]==True,1,0],{k,1,n-1}] Do[Print[n," ",a[n]],{n,1,1000}] apQ[{a_,b_}]:=AllTrue[{3a-2,3a+2,2a*b+1},PrimeQ]; Table[Count[Flatten[ Permutations/@ IntegerPartitions[n,{2}],1],?(apQ[#]&)],{n,100}] (* The program uses the AllTrue function from Mathematica version 10 *) (* _Harvey P. Dale, Jun 09 2018 *)
Comments