A220447 Define sequence x(n) by x(1)=1, thereafter x(n) = (x(n-1)+n)/(1-n*x(n-1)); sequence gives denominator(x(n)).
1, 1, 1, 1, 19, 73, 331, 43, 281, 4511, 10873, 322921, 12179, 720817, 538759, 87995911, 1185403, 37171235, 46336951, 6986985769, 2602576465, 243540693677, 181777598557, 13097400661955, 135996437150855, 8249498995171439, 56213506181241631, 601615828819880125, 10365435567354511181
Offset: 1
Examples
The x(n) sequence begins 1, -3, 0, 4, -9/19, 105/73, -308/331, 36/43, -423/281, 2387/4511, -26004/10873, ...
Links
- V. H. Moll, An arithmetic conjecture on a sequence of arctangent sums, 2012.
Crossrefs
For numerators see A180657.
Programs
-
Maple
x:=proc(n) option remember; if n=1 then 1 else (x(n-1)+n)/(1-n*x(n-1)); fi; end; s1:=[seq(x(n),n=1..30)]; # x(n) s2:=map(numer,s1); # A180657 s3:=map(denom,s1); # A220447
-
Mathematica
x[n_] := x[n] = If[n == 1, 1, (x[n-1] + n)/(1 - n*x[n-1])]; a[n_] := Denominator[x[n]]; Table[a[n], {n, 1, 29}] (* Jean-François Alcover, Aug 09 2023 *)
Comments