cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A220474 Chebyshev numbers C_v(n) for v=10/9: a(n) is the smallest number such that if x>=a(n), then theta(x)-theta(9*x/10)>=n*log(x), where theta(x)=sum_{prime p<=x}log p.

Original entry on oeis.org

223, 227, 269, 349, 359, 569, 587, 593, 739, 809, 857, 991, 1009, 1019, 1259, 1481, 1483, 1487, 1489, 1861, 1867, 1993, 1997, 2003, 2027, 2267, 2269, 2657, 2671, 2687, 2689, 2699, 3181, 3187, 3307, 3313, 3319, 3323, 3457, 3461, 3491, 3527, 3529, 3581, 3623, 3769, 4049, 4201, 4391, 4481
Offset: 1

Views

Author

Keywords

Comments

All terms are primes.
Up to a(99)=9029, all terms are (10/9)-Ramanujan numbers as in Shevelev's link; up to 9029, the only missing (10/9)-Ramanujan number is 127.

Crossrefs

Programs

  • Mathematica
    k=9; xs=Table[{m,Ceiling[x/.FindRoot[(x (-1300+Log[x]^4))/Log[x]^5==(k+1) m,{x,f[(k+1) m]-1},AccuracyGoal->Infinity,PrecisionGoal->20,WorkingPrecision->100]]},{m,1,101}]; Table[{m,1+NestWhile[#-1&,xs[[m]][[2]],(1/Log[#1]Plus@@Log[Select[Range[Floor[(k #1)/(k+1)]+1,#1],PrimeQ]]&)[#]>m&]},{m,1,100}] (* Peter J. C. Moses, Dec 20 2012 *)
    (* Assuming range of x is from a(n) to 2*a(n) *) Clear[a, theta]; theta[x_] := theta[x] = Sum[Log[p], {p, Table[Prime[k], {k, 1, PrimePi[x]}]}] // N; a[0] = 211(* just to speed-up computation *); a[n_] := a[ n] = (t = Table[an = Prime[pi]; Table[{an, x >= an && theta[x] - theta[9*x/10] >= n*Log[x]}, {x, an, 2*an}], {pi, PrimePi[a[n-1]], 31*(n+1)}]; sp = t // Flatten[#, 1]& // Sort // Split[#, #1[[1]] == #2[[1]]& ]&; Select[sp, And @@ (#[[All, 2]]) &] // First // First // First); Table[Print[a[n]]; a[n], {n, 1, 50}] (* Jean-François Alcover, Feb 11 2013 *)

Formula

a(n)<=prime(31*(n+1)).

Extensions

More terms from Jean-François Alcover, Feb 11 2013