A220486 a(n) = n(p(n)-d(n)): sum of all of parts of all partitions of n with at least one distinct part.
0, 0, 3, 8, 25, 42, 91, 144, 243, 380, 594, 852, 1287, 1834, 2580, 3616, 5015, 6822, 9272, 12420, 16548, 21956, 28819, 37608, 48875, 63232, 81162, 103936, 132327, 167880, 212040, 266976, 334587, 418404, 520765, 646848, 800495, 988418, 1216059, 1493200
Offset: 1
Examples
For n = 6 ----------------------------------------------------- Partitions of 6 Value ----------------------------------------------------- 6 .......................... 0 (all parts are equal) 5 + 1 ...................... 6 4 + 2 ...................... 6 4 + 1 + 1 .................. 6 3 + 3 ...................... 0 (all parts are equal) 3 + 2 + 1 .................. 6 3 + 1 + 1 + 1 .............. 6 2 + 2 + 2 .................. 0 (all parts are equal) 2 + 2 + 1 + 1 .............. 6 2 + 1 + 1 + 1 + 1 .......... 6 1 + 1 + 1 + 1 + 1 + 1 ...... 0 (all parts are equal) ----------------------------------------------------- The sum of the values is 42 On the other hand p(6) = A000041(6) = 11 and d(6) = A000005(6) = 4, so a(6) = 6*(p(6) - d(6)) = 6*(11 - 4) = 6*7 = 42.