cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A220485 spt(5n+4) where spt(n) = A092269(n).

Original entry on oeis.org

10, 80, 440, 1820, 6545, 20630, 59960, 161840, 412950, 1002435, 2335760, 5246120, 11416820, 24146510, 49795175, 100348950, 198063060, 383516700, 729726660, 1366124700, 2519441030, 4581865140, 8224627160, 14584074770, 25565740130, 44334556890, 76102268520
Offset: 0

Views

Author

Omar E. Pol, Jan 18 2013

Keywords

Comments

a(n) is divisible by 5 (see A220505).

Crossrefs

Formula

a(n) = A092269(A016897(n)).

A220507 a(n) = spt(7n+5)/7 where spt(n) = A092269(n).

Original entry on oeis.org

2, 34, 260, 1498, 6956, 28024, 100953, 333680, 1026540, 2976024, 8197962, 21608760, 54788100, 134217717, 318816426, 736549424, 1659169712, 3652248590, 7870890952, 16633964444, 34522173765, 70450341042, 141526909340, 280158178412
Offset: 0

Views

Author

Omar E. Pol, Jan 18 2013

Keywords

Comments

That spt(7n+5) == 0 (mod 7) is one of the congruences stated by George E. Andrews. See theorem 2 in the Andrews' paper. See also A220505 and A220513.

Crossrefs

Programs

  • Mathematica
    b[n_, i_] := b[n, i] = If[n==0 || i==1, n, {q, r} = QuotientRemainder[n, i]; If[r == 0, q, 0] + Sum[b[n - i*j, i - 1], {j, 0, n/i}]];
    spt[n_] := b[n, n];
    a[n_] := spt[7 n + 5]/7;
    Table[a[n], {n, 0, 23}] (* Jean-François Alcover, Jan 30 2019, after Alois P. Heinz in A092269 *)

Formula

a(n) = A092269(A017041(n))/7 = A220502(n)/7.

A220513 a(n) = spt(13n+6)/13 where spt(n) = A092269(n).

Original entry on oeis.org

2, 140, 3042, 38054, 344212, 2488260, 15235620, 81926240, 396603536, 1759312286, 7246532360, 27998586490, 102294344881, 355704104008, 1183463874068, 3784162891544, 11672177600660, 34840196162760, 100912078549712, 284295561826160
Offset: 0

Views

Author

Omar E. Pol, Jan 18 2013

Keywords

Comments

That spt(13n+6) == 0 (mod 13) is one of the congruences stated by George E. Andrews. See theorem 2 in the Andrews' paper. See also A220505 and A220507.

Crossrefs

Programs

  • Mathematica
    b[n_, i_] := b[n, i] = If[n==0 || i==1, n, {q, r} = QuotientRemainder[n, i]; If[r == 0, q, 0] + Sum[b[n - i*j, i - 1], {j, 0, n/i}]];
    spt[n_] := b[n, n];
    a[n_] := spt[13 n + 6]/13;
    Table[a[n], {n, 0, 19}] (* Jean-François Alcover, Jan 30 2019, after Alois P. Heinz in A092269 *)

Formula

a(n) = A092269(A186113(n))/13 = A220503(n)/13.
Showing 1-3 of 3 results.