A220513 a(n) = spt(13n+6)/13 where spt(n) = A092269(n).
2, 140, 3042, 38054, 344212, 2488260, 15235620, 81926240, 396603536, 1759312286, 7246532360, 27998586490, 102294344881, 355704104008, 1183463874068, 3784162891544, 11672177600660, 34840196162760, 100912078549712, 284295561826160
Offset: 0
Keywords
Links
- G. E. Andrews, The number of smallest parts in the partitions of n
- G. E. Andrews, F. G. Garvan, and J. Liang, Combinatorial interpretation of congruences for the spt-function
- K. C. Garrett, C. McEachern, T. Frederick, O. Hall-Holt, Fast computation of Andrews' smallest part statistic and conjectured congruences, Discrete Applied Mathematics, 159 (2011), 1377-1380.
- F. G. Garvan, Congruences for Andrews' smallest parts partition function and new congruences for Dyson's rank
- F. G. Garvan, Congruences for Andrews' spt-function modulo powers of 5, 7 and 13
- F. G. Garvan, Congruences for Andrews' spt-function modulo 32760 and extension of Atkin's Hecke-type partition congruences, arXiv:1011.1957 [math.NT], 2010.
- K. Ono, Congruences for the Andrews spt-function
Programs
-
Mathematica
b[n_, i_] := b[n, i] = If[n==0 || i==1, n, {q, r} = QuotientRemainder[n, i]; If[r == 0, q, 0] + Sum[b[n - i*j, i - 1], {j, 0, n/i}]]; spt[n_] := b[n, n]; a[n_] := spt[13 n + 6]/13; Table[a[n], {n, 0, 19}] (* Jean-François Alcover, Jan 30 2019, after Alois P. Heinz in A092269 *)
Comments