A220533 a(n) is minimal number such that the set of all composite numbers <= a(n) contains complete residue system modulo n.
4, 9, 8, 15, 12, 35, 14, 27, 20, 33, 24, 65, 26, 45, 32, 45, 36, 77, 38, 63, 44, 63, 46, 95, 48, 69, 56, 87, 60, 187, 62, 93, 64, 105, 72, 175, 74, 117, 80, 123, 84, 215, 86, 117, 92, 135, 94, 245, 96, 153, 104, 141, 106, 245, 108, 165, 116
Offset: 1
Keywords
Programs
-
Maple
A220533 := proc(n) local sco,c,ai,scor ; sco := {} ; for ai from 1 do sco := sco union {A002808(ai)} ; scor := convert( [seq(c mod n,c=sco)], set) ; if nops(scor) = n then return A002808(ai) ; end if; end do: end proc: seq(A220533(n),n=1..60) ; # R. J. Mathar, Feb 27 2013
-
Mathematica
A002808[n_] := A002808[n] = Module[{a}, If[ n == 1 , 4, For[a = A002808[n-1] + 1 , True, a++, If[! PrimeQ[a], Return [a]]]]]; A220533[n_] := Module[{ sco, c, ai, scor}, sco = {}; For[ai = 1, True, ai++, AppendTo[sco, A002808[ai]] ; scor = Mod[#, n]& /@ sco // Union; If[Length[scor] == n , Return[A002808[ai]]]]]; Table[A220533[n], {n, 1, 57}] (* Jean-François Alcover, Feb 28 2013, translated from R. J. Mathar's Maple program *)
Formula
For odd n, a(n) <= 2n + 2; the equality holds if and only if n + 2 is prime.
a(n)<2*n for 25,33,49,... - R. J. Mathar and Vladimir Shevelev, Feb 28 2013
Extensions
Corrected and extended by R. J. Mathar, Feb 27 2013