cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A220567 Number of ways to reciprocally link elements of an 6Xn array either to themselves or to exactly one horizontal or antidiagonal neighbor.

Original entry on oeis.org

1, 233, 6076, 338581, 14298089, 665748170, 29955561052, 1363847439227, 61845935792336, 2808292682072854, 127461441592952329, 5786012622635830257, 262638882187378528534, 11921898805633926722093, 541164958214032363841199
Offset: 1

Views

Author

R. H. Hardin Dec 16 2012

Keywords

Comments

Row 6 of A220562

Examples

			Some solutions for n=3 0=self 3=ne 4=w 6=e 7=sw (reciprocal directions total 10)
..0..7..7....0..0..0....6..4..7....0..7..0....0..7..0....0..0..0....0..6..4
..3..3..0....6..4..0....0..3..0....3..6..4....3..7..0....6..4..0....6..4..7
..6..4..0....0..6..4....0..6..4....6..4..0....3..0..0....0..0..0....0..3..0
..0..0..0....6..4..7....6..4..0....0..7..0....0..7..0....0..0..0....0..0..7
..0..7..0....0..3..0....0..6..4....3..7..0....3..7..7....0..0..7....0..3..0
..3..0..0....0..6..4....0..6..4....3..6..4....3..3..0....0..3..0....6..4..0
		

Formula

Empirical: a(n) = 13*a(n-1) +1348*a(n-2) +10654*a(n-3) -198504*a(n-4) -1906076*a(n-5) +16144268*a(n-6) +135853346*a(n-7) -925177576*a(n-8) -4891188529*a(n-9) +35999318281*a(n-10) +81980396412*a(n-11) -848296316904*a(n-12) -276758340388*a(n-13) +11227641980488*a(n-14) -7107958733596*a(n-15) -92787258095632*a(n-16) +107881224287236*a(n-17) +525583351897147*a(n-18) -774675289613655*a(n-19) -2182902615756840*a(n-20) +3555500220788694*a(n-21) +6973910104740084*a(n-22) -11426713159097796*a(n-23) -17667940720548336*a(n-24) +26747813225197794*a(n-25) +35945989169311476*a(n-26) -46394604844529149*a(n-27) -58560503957694547*a(n-28) +59946651607436776*a(n-29) +75473026016657552*a(n-30) -57619701988418728*a(n-31) -75893814357642448*a(n-32) +40983675195728936*a(n-33) +58931290214948032*a(n-34) -21385512054198856*a(n-35) -35152757210761395*a(n-36) +8057875480743783*a(n-37) +16091164614749124*a(n-38) -2117225467318182*a(n-39) -5658108579422624*a(n-40) +352030436802844*a(n-41) +1530178310024236*a(n-42) -22441127837162*a(n-43) -318296736753680*a(n-44) -5136539584403*a(n-45) +50823610079499*a(n-46) +1734560714908*a(n-47) -6199297816488*a(n-48) -263242733620*a(n-49) +572842763656*a(n-50) +25065179764*a(n-51) -39590221744*a(n-52) -1591760572*a(n-53) +2008410297*a(n-54) +67587747*a(n-55) -72760800*a(n-56) -1863630*a(n-57) +1806100*a(n-58) +31300*a(n-59) -28744*a(n-60) -282*a(n-61) +260*a(n-62) +a(n-63) -a(n-64)