A220668 Coefficient array for the powers of x^2 of the square of the even-indexed Chebyshev C polynomials.
4, 4, -4, 1, 4, -16, 20, -8, 1, 4, -36, 105, -112, 54, -12, 1, 4, -64, 336, -672, 660, -352, 104, -16, 1, 4, -100, 825, -2640, 4290, -4004, 2275, -800, 170, -20, 1, 4, -144, 1716, -8008, 19305, -27456, 24752, -14688, 5814, -1520, 252, -24, 1, 4, -196, 3185, -20384, 68068, -136136, 176358, -155040, 94962, -40964, 12397, -2576, 350, -28, 1
Offset: 0
Examples
The array begins: n\m 0 1 2 3 4 5 6 7 8 9 10 0: 4 1: 4 -4 1 2: 4 -16 20 -8 1 3: 4 -36 105 -112 54 -12 1 4: 4 -64 336 -672 660 -352 104 -16 1 5: 4 -100 825 -2640 4290 -4004 2275 -800 170 -20 1 ... Row 6: [4, -144, 1716, -8008, 19305, -27456, 24752, -14688, 5814, -1520, 252, -24, 1], Row 7: [4, -196, 3185, -20384, 68068, -136136, 176358, -155040, 94962, -40964, 12397, -2576, 350, -28, 1]. Row n=2: C(2,x)^2 = (-2 + x^2)^2 = 4 - 4*x^2 + 1*x^4, with the row polynomial P(2,x) = C(2,sqrt(x))^2 = 4 - 4*x + 1*x^2.
Crossrefs
Cf. A127672.
Formula
a(n,m) = [x^m] C(n,x)^2, n >= 0, 0 <= m <= 2*n, with Chebyshev's C polynomials (see A127672).
a(n,m) =[x^m]([z]^n GC2even(x,z)), with the o.g.f. GC2even(x,z) given in a comment above.
Comments