A220672 Coefficients of powers of x^2 of polynomials, called h(2,n,x^2), appearing in a conjecture on alternating sums of fifth powers of odd-indexed Chebyshev S polynomials stated in A220671.
-14, 6, 5, -12, 3, 46, -95, 16, 75, -69, 24, -3, 106, -520, 928, -607, -351, 894, -651, 234, -42, 3, 186, -1600, 5840, -11355, 11005, -1110, -9615, 11580, -6906, 2433, -513, 60, -3, 286, -3775, 22360, -75595, 153515, -177565, 77115, 84495, -171324, 145302, -75831, 26235, -6057, 900, -78, 3
Offset: 0
Examples
The array a(n,p) begins: n\p 0 1 2 3 4 5 6 7 8 9 0: -14 1: 6 5 -12 3 2: 46 -95 16 75 -69 24 -3 3: 106 -520 928 -607 -351 894 -651 234 -42 3 ... Row n=4: [186, -1600, 5840, -11355, 11005, -1110, -9615, 11580, -6906, 2433, -513, 60, -3]; Row n=5: [286, -3775, 22360, -75595, 153515, -177565, 77115, 84495, -171324, 145302, -75831, 26235, -6057, 900, -78, 3]. Thus the conjecture is true at least for n=1..5.
Formula
a(n,p) = [x^(2p)] h(0,2,n,x^2), with the polynomial h defined above in a comment. The conjecture is that h is an integer polynomial of degree 3n in x^2.
Comments