A220671 Coefficient array for powers of x^2 of polynomials appearing in a generalized Melham conjecture on alternating sums of fifth powers of Chebyshev S polynomials with odd indices.
-14, 15, -20, 8, -1, 55, -170, 221, -153, 59, -12, 1, 115, -670, 1773, -2696, 2549, -1538, 589, -138, 18, -1, 195, -1850, 8215, -21530, 36330, -41110, 31865, -17080, 6314, -1579, 255, -24, 1, 295, -4150, 27735, -110795, 289540, -518290, 654595, -595805, 396316, -193906, 69641, -18129, 3327, -408, 30, -1
Offset: 1
Examples
The array a(n,p) begins: n\p 0 1 2 3 4 5 6 7 8 9 10 11 12 0: -14 1: 15 -20 8 -1 2: 55 -170 221 -153 59 -12 1 3: 115 -670 1773 -2696 2549 -1538 589 -138 18 -1 4: 195 -1850 8215 -21530 36330 -41110 31865 -17080 6314 -1579 255 -24 1 ... Row n=5: [295, -4150, 27735, -110795, 289540, -518290, 654595, -595805, 396316, -193906, 69641, -18129, 3327, -408, 30, -1], Row n=6: [415, -8120, 76118, -429531, 1599441, -4125672, 7621983, -10350335, 10539787, -8164410, 4853792, -2222153, 781514, -209172, 41823, -6047, 597, -36, 1].
Formula
a(n,p) = [x^(2*p)] H(2,n,x^2), n>=1, with H(2,n,x^2) defined in a comment above. a(0,0) has been put to -14 ad hoc.
Comments