A220674 Decimal expansion of the area of Dürer's approximation of a regular pentagon with each side of unit length.
1, 7, 2, 0, 3, 1, 1, 4, 2, 9, 7, 3, 7, 1, 7, 1, 6, 6, 2, 6, 1, 8, 8, 1, 7, 8, 1, 0, 2, 8, 4, 9, 4, 7, 9, 7, 6, 1, 6, 1, 2, 0, 3, 4, 6, 8, 1, 1, 1, 8, 9, 7, 9, 1, 2, 7, 4, 5, 8, 4, 2, 5, 3, 3, 3, 2, 2, 7, 4, 2, 5, 3, 9, 8, 5, 9, 6, 0, 2, 9, 0, 4, 8, 3, 9, 0, 6, 2, 5, 2, 9, 6, 1, 6, 0, 8, 6, 1, 2, 8
Offset: 1
Links
- G. C. Greubel, Table of n, a(n) for n = 1..10000
- Cut-The-Knot, Approximate Construction of Regular Pentagon by A. Dürer
- G. Hughes, The Polygons of Albrecht Durer -1525, arXiv:1205.0080 [math.HO], 2012.
- Wolfdieter Lang, Albrecht Dürer's approximation of a regular 5-gon.
- Wikimedia Commons, Albrecht Dürer, Underweysung der messung ..., 1525, title page.
- Wikisource Albrecht Dürer, Underweysung der messung ..., Zweites Buch, 1525 (in German).
Crossrefs
Cf. A102771 (pentagon area).
Programs
-
Mathematica
r = Sqrt[7 - 3*Sqrt[3] + 2*(Sqrt[3]-1)* Cos[a]]; area = (2 + Sqrt[3] + r - 2*Cos[a]*(r+2))/4 /. Cos[a] -> (3 - Sqrt[3] - Sqrt[6*Sqrt[3]-4])/4; RealDigits[area, 10, 100] // First (* Jean-François Alcover, Feb 13 2013 *)
Formula
The dimensionless area of Dürer's pentagon is
F_D/r^2 = (1 + 2*x)*y1/2 + x*y2, with x = (a + sqrt(a*(a+8)))/4, a := sqrt(3) - 1, y1 = 1 - sqrt(3)/2 + x, y2 = sqrt(1 - x^2). The approximate values for x, y1 and y2 are 0.8150878978, 0.9490624938, 0.5793373101, respectively. This leads to the approximate value 1.720311430 for F_D/r^2, and the present sequence gives more accurate digits.
Comments