A220698 Indices of triangular numbers generated in A224218.
1, 6, 6, 14, 14, 14, 14, 43, 43, 36, 57, 36, 52, 43, 49, 43, 89, 52, 89, 52, 121, 49, 52, 57, 70, 89, 249, 89, 89, 89, 70, 166, 166, 103, 89, 121, 103, 103, 121, 89, 103, 241, 158, 158, 91, 91, 91, 91, 241, 166, 166, 103, 121, 103, 103, 121, 103, 121, 225, 225, 497, 216, 334
Offset: 1
Keywords
Programs
-
Maple
A220698 := proc(n) A127648(A220689(n)-1) ; end proc: # R. J. Mathar, Apr 23 2013
-
Mathematica
nmax = 100; pmax = 2 nmax^2; (* increase coeff 2 if A224218 is too short *) A224218 = Join[{0}, Flatten[Position[Partition[Accumulate[Range[pmax]], 2, 1], _?(OddQ[Sqrt[1 + 8 BitXor[#[[1]], #[[2]]]]]&), {1}, Heads -> False]]]; a[n_] := Module[{i, t}, i = A224218[[n]]; t = BitXor[PolygonalNumber[i], PolygonalNumber[i + 1]]; (Sqrt[8 t + 1] - 1)/2]; Table[a[n], {n, 1, nmax}] (* Jean-François Alcover, Aug 07 2023, after Harvey P. Dale in A224218 *)
-
Python
def rootTriangular(a): sr = 1<<33 while a < sr*(sr+1)//2: sr>>=1 b = sr>>1 while b: s = sr+b if a >= s*(s+1)//2: sr = s b>>=1 return sr for i in range(1<<12): s = (i*(i+1)//2) ^ ((i+1)*(i+2)//2) t = rootTriangular(s) if s == t*(t+1)//2: print(str(t), end=',')
Comments