cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A220901 Triangle read by rows: k-th "a-number" of star graph K_{1,n-1}.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 3, 2, 1, 4, 8, 1, 5, 20, 16, 1, 6, 40, 96, 1, 7, 70, 336, 272, 1, 8, 112, 896, 2176, 1, 9, 168, 2016, 9792, 7936, 1, 10, 240, 4032, 32640, 79360, 1, 11, 330, 7392, 89760, 436480, 353792, 1, 12, 440, 12672, 215424, 1745920, 4245504
Offset: 0

Views

Author

N. J. A. Sloane, Jan 01 2013

Keywords

Examples

			Triangle begins:
  1;
  1;
  1, 1;
  1, 2;
  1, 3,  2;
  1, 4,  8;
  1, 5, 20,  16;
  1, 6, 40,  96;
  1, 7, 70, 336, 272;
  ...
		

Programs

  • Mathematica
    t[n_, k_] := t[n, k] = If[k == 0, Boole[n == 0], t[n, k-1] + t[n-1, n-k]];
    T[n_, k_] := If[k == 0, 1, Binomial[n-1, 2k-1] t[2k-1, 2k-1]];
    Table[T[n, k], {n, 0, 13}, {k, 0, Floor[n/2]}] // Flatten (* Jean-François Alcover, Oct 06 2018 *)
  • PARI
    T(n,k) = {if (k == 0, return(1)); binomial(n - 1, 2*k - 1)*(2*k - 1)!*polcoeff(tan(x + O(x^(2*n + 2))), 2*k - 1);} \\ Michel Marcus, Feb 07 2013

Formula

T(n,k) = binomial(n-1, 2*k-1)*A000111(2*k-1) (see Theorem 2.9 in paper). - Michel Marcus, Feb 07 2013

Extensions

More terms from Michel Marcus, Feb 07 2013