cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A220908 The second rank moment function N_2(n).

Original entry on oeis.org

0, 2, 8, 20, 42, 80, 140, 238, 380, 602, 910, 1372, 1996, 2900, 4102, 5790, 8002, 11046, 14980, 20282, 27090, 36092, 47546, 62510, 81374, 105700, 136210, 175084, 223510, 284694, 360410, 455244, 572054, 717160, 894964, 1114470, 1382032, 1710262, 2108750, 2594704, 3182120
Offset: 1

Views

Author

N. J. A. Sloane, Jan 02 2013

Keywords

Comments

N_2(n) is also called the second Atkin-Garvan moment (see Andrews' paper). - Omar E. Pol, Oct 23 2013

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0 or i<1, 0,
          `if`(irem(n, i, 'r')=0, r, 0)+add(b(n-i*j, i-1), j=0..n/i))
        end:
    a:= n-> 2*(n*combinat[numbpart](n)- b(n, n)):
    seq(a(n), n=1..60);  # Alois P. Heinz, Jan 09 2013
  • Mathematica
    terms = 41; gf = Sum[x^n/(1 - x^n)*Product[1/(1 - x^k), {k, n, terms}], {n, 1, terms}]; spt = CoefficientList[ Series[gf, {x, 0, terms}], x] // Rest; a[n_] := 2*(n*PartitionsP[n] - spt[[n]]); Table[a[n], {n, 1, terms}] (* Jean-François Alcover, Jan 17 2013, after g.f. of spt(n) *)

Formula

a(n) = 2*A220907(n) = 2*(n*A000041(n)-A092269(n)).
a(n) = 2*(A066186(n) - A092269(n)). - Omar E. Pol, Jan 09 2013
a(n) = A220909(n) - A211982(n). - Omar E. Pol, Jan 16 2013
a(n) ~ exp(Pi*sqrt(2*n/3))/(2*sqrt(3)) * (1 - (3*sqrt(6)/(2*Pi) + Pi/(24*sqrt(6)))/sqrt(n) + (5/48 + Pi^2/6912)/n). - Vaclav Kotesovec, Jul 31 2017