cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A220990 a(n) = 12^(2n+1) + 6 * 12^n + 1: the right Aurifeuillian factor of 12^(6n+3) + 1.

Original entry on oeis.org

19, 1801, 249697, 35842177, 5159904769, 743009863681, 106993223294977, 15407021789577217, 2218611109320327169, 319479999401581608961, 46005119909741205651457, 6624737266953695061344257, 953962166440743626203987969
Offset: 0

Views

Author

Stuart Clary, Dec 27 2012

Keywords

Comments

The corresponding left Aurifeuillian factor is A220989.

Crossrefs

Programs

  • Mathematica
    Table[12^(2n+1) + 6 * 12^n + 1, {n, 0, 10}]
    LinearRecurrence[{157,-1884,1728},{19,1801,249697},20] (* Harvey P. Dale, Mar 26 2022 *)
  • PARI
    a(n)=12^(2*n+1)+6*12^n+1 \\ Charles R Greathouse IV, Sep 28 2015

Formula

Aurifeuillian factorization: 12^(6n+3) + 1 = (12^(2n+1) + 1) * A220989(n) * a(n).
G.f.: -(2736*x^2-1182*x+19) / ((x-1)*(12*x-1)*(144*x-1)). - Colin Barker, Jan 03 2013

A220986 The right Aurifeuillian factor of 10^(20n + 10) + 1.

Original entry on oeis.org

27961, 1105207205101, 101005020070200501001, 10010005002000700200050010001, 1000100005000200007000200005000100001, 100001000005000020000070000200000500001000001, 10000010000005000002000000700000200000050000010000001
Offset: 0

Views

Author

Stuart Clary, Dec 27 2012

Keywords

Comments

The corresponding left Aurifeuillian factor is A220985.

Crossrefs

Programs

  • Mathematica
    a[n_] := 10^(8n + 4) + 10^(7n + 4) + 5 * 10^(6n + 3) + 2 * 10^(5n + 3) + 7 * 10^(4n + 2) + 2 * 10^(3n + 2) + 5 * 10^(2n + 1) + 10^(n + 1) + 1

Formula

a(n) = 10^(8n + 4) + 10^(7n + 4) + 5 * 10^(6n + 3) + 2 * 10^(5n + 3) + 7 * 10^(4n + 2) + 2 * 10^(3n + 2) + 5 * 10^(2n + 1) + 10^(n + 1) + 1
Aurifeuillian factorization: 10^(20n + 10) + 1 = (10^(4n + 2) + 1) * A220985(n) * a(n)
Showing 1-2 of 2 results.