cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A221020 Reduced denominators of A179420(n)/n!, where e.g.f. A(x) = Sum_{n>=0} A179420(n)/n! satisfies: A(A(x)) = x*A'(x) with A(0)=0, A'(0)=1.

Original entry on oeis.org

1, 1, 1, 2, 3, 6, 5, 360, 420, 56, 756, 75600, 415800, 2494800, 8424, 1223040, 504504000, 9081072000, 5145940800, 111152321280, 754247894400, 37712394720000, 430747632000, 14454741869568, 319672175961600, 4080179409546240, 14011605115200000, 1653814216454400000
Offset: 1

Views

Author

Paul D. Hanna, Dec 28 2012

Keywords

Comments

See A179420 for a description of the fascinating properties of the e.g.f. A(x) that satisfies: A(A(x)) = x*A'(x).

Examples

			E.g.f. A(x) of A179420 begins:
A(x) = x + 2*x^2/2! + 12*x^3/3! + 132*x^4/4! + 2200*x^5/5! +...+ A179420(n)/n!*x^n +...
or, equivalently,
A(x) = x + 1/1*x^2 + 2/1*x^3 + 11/2*x^4 + 55/3*x^5 + 419/6*x^6 + 1471/5*x^7 + 483673/360*x^8 + 2756471/420*x^9 + 1902667/56*x^10 +...+ A221019(n)/A221020(n)*x^n +...
which satisfies: A(A(x)) = x*A'(x) where:
A'(x) = 1 + 2*x + 12*x^2/2! + 132*x^3/3! + 2200*x^4/4! +...
A(A(x)) = x + 4*x^2/2! + 36*x^3/3! + 528*x^4/4! + 11000*x^5/5! +...
		

Crossrefs

Programs

  • PARI
    {A179420(n)=local(A=x+x^2+sum(m=3, n-1, A179420(m)*x^m/m!)+x*O(x^n)); if(n<3, n!*polcoeff(A, n),
    n!*polcoeff(subst(A, x, A), n)/(n-2))}
    {a(n)=denominator(A179420(n)/n!)}
    for(n=1,25,print1(a(n),","))

Formula

A221019(n)/A221020(n) = A179420(n)/n!.