cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A221058 Number of inversions in all Dyck prefixes of length n.

Original entry on oeis.org

0, 0, 0, 1, 4, 14, 42, 114, 304, 748, 1870, 4370, 10488, 23748, 55412, 122836, 280768, 613016, 1379286, 2977362, 6616360, 14156500, 31144300, 66168476, 144367584, 304960104, 660746892, 1389097684, 2991902704, 6264621608, 13424189160, 28011759720, 59758420736, 124325484592, 264191654758, 548218962386
Offset: 0

Views

Author

Emeric Deutsch, Jan 22 2013

Keywords

Comments

A Dyck prefix of length n is a binary word of a total of n 0's and 1's in which no initial segment contains more 1's than 0's.

Examples

			a(4) = 4 because the Dyck prefixes of length 4 are 0101, 0100, 0011, 0010, 0001, and 0000 having a total of 1+2+0+1+0+0 = 4 inversions.
		

Crossrefs

Programs

  • Maple
    for n from 0 to 30 do Q[2*n+1] := 0 end do: Q[0] := 1: for n from 0 to 30 do Q[2*n+2] := sort(expand(sum(q^(((i+1)*(1/2))*(2*n-2*i))* Q[2*i]* Q[2*n-2*i], i = 0 .. n))) end do: R[0] := 1: for n to 50 do R[n] := sort(expand(t*subs(s = q*s, R[n-1])+s*(R[n-1]-t^((n-1)*(1/2))*s^((n-1)* (1/2))*Q[n-1]))) end do: seq(subs({q = 1, s = 1, t = 1}, diff(R[n], q)), n = 0 .. 35);
    # second Maple program:
    a:= proc(n) option remember; `if`(n<5, [0$3, 1, 4][n+1],
          (4*(n-3)*(n-4) *a(n-1) +4*(n-4)*(2*n^2-9*n+8) *a(n-2)
          -8*(n-2)*(2*n-7) *a(n-3) -16*(n-2)*(n-3)^2 *a(n-4))/
          ((n-2)*(n-3)*(n-4)))
        end:
    seq(a(n), n=0..40);  # Alois P. Heinz, Jan 22 2013
  • Mathematica
    CoefficientList[Series[x^2*(1+x-Sqrt[1-4*x^2])/((1-2*x)*Sqrt[(1-4*x^2)^3]),{x,0,20}],x] (* Vaclav Kotesovec, Jan 28 2013 *)

Formula

a(n) = Sum_{k>=0} k*A221057(n,k).
Let R_n(t,s,q) be the trivariate generating polynomial of the Dyck prefixes of length n with respect to number of 0's (t), number of 1's (s), and number of inversions (q). Then R_1 = t and R_n(t,s,q) = tR_{n-1}(t,qs,q) + s[R_{n-1}(t,s,q) - (ts)^{(n-1)/2} Q_{n-1}(q)], where Q_n(q) is the generating polynomial of the Dyck words of length n with respect to number of inversions. Notice that Q_{2n+1}=0 and Q_{2n} = Ctilde_q(n) given in the Shattuck reference (Eq. (4.6)). Then a(n) = dR/dq, evaluated at t=s=q=1.
G.f.: x^2*(1+x-sqrt(1-4*x^2))/((1-2*x)*sqrt((1-4*x^2)^3)). - Vaclav Kotesovec, Jan 28 2013
a(n) ~ 2^(n-3)*n^(3/2)*sqrt(2/Pi) * (1-sqrt(Pi/(2*n))). - Vaclav Kotesovec, Jan 28 2013
D-finite with recurrence +(-n+2)*a(n) +n*a(n-1) +2*(5*n-14)*a(n-2) +4*(-2*n+1)*a(n-3) +8*(-4*n+15)*a(n-4) +16*(n-1)*a(n-5) +32*(n-5)*a(n-6)=0. - R. J. Mathar, Jul 24 2022